
Introduction

Spectral theory of abelian categories was started by P. Gabriel in early sixties [Gab].
Elements of the Gabriel’s spectrum are isomorphism classes of indecomposable injectives.
If R is a commutative noetherian ring, the Gabriel’s spectrum of the category of R-modules
is naturally isomorphic to the prime spectrum of the ring R. More generally, the Gabriel’s
spectrum of the category of quasi-coherent sheaves on a noetherian scheme is isomorphic
to the underlying space of the scheme [Gab, Ch. VI, Theorem 1].

The Gabriel’s spectrum was the only spectrum of an abelian category for more than
a quarter of century (except for it was rediscovered a couple of times). Then three other
spectra were assigned to an abelian category CX : the spectrum Spec(X) (see [R1] and
[R, Ch. 3]), the S-spectrum Spec−(X), and the complete spectrum Spec1(X) [R, Ch.6].
These spectra make sense without noetherian hypothesis. If CX is the category of modules
over an arbitrary commutative unital ring R, then Spec(X) is naturally isomorphic to the
prime spectrum of R. More generally, if CX is the category of quasi-coherent sheaves on
a quasi-compact quasi-separated scheme, then Spec(X) is isomorphic to the underlying
space of the scheme. This fact is obtained in [R4] as a consequence of a theorem on local
properties of the spectrum Spec(X). In Section 9 of this work, we prove a refined version
of this theorem. For an arbitrary abelian category CX , isomorphism classes of simple
objects of CX correspond to closed points of Spec(X).

The S-spectrum is larger than Spec(X) – there is a natural embedding of Spec(X)
into Spec−(X). If CX is a locally noetherian Grothendieck category (or, more generally, a
Grothendieck category with a Gabriel-Krull dimension), then the S-spectrum is naturally
isomorphic to the Gabriel spectrum. An advantage of the S-spectrum is that it makes
sense for abelian categories without injective objects, like, for example, the category of
coherent sheaves on a scheme, or the category of finitely generated modules over a ring.

One of practical merits of the complete spectrum is that it contains the S-spectrum
and is functorial with respect to arbitrary open immersions, while the S-spectrum is func-
torial only with respect to open immersion having direct image functor. As a result, the
underlying space of a scheme is naturally embedded into the complete spectrum of the
category of quasi-coherent sheaves on the scheme.

In [R5], several new spectra were defined which make sense for ’spaces’ represented
by (not necessarily abelian) categories, in particular, the spectra of ’spaces’ represented
by triangulated categories. Finally, a natural, very general construction of spectra was
proposed in [R6]. This construction is tested here on the spectra Spec(X), Spec−(X),
and Spec1(X); that is we use the construction to study these spectra, as well as some
other spectra which appeared in [R5] or suggested by the construction of [R6].

The main thrust of the paper is establishing local properties of the spectra which are
needed to study the spectra of non-affine noncommutative schemes, and are crucial for
reconstruction problems. These local properties are also used in computations of spectra
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and applications of noncommutative local algebra and algebraic geometry to representation
theory [R7].

Section 1 contains the necessary preliminaries on ’spaces’ and morphisms of ’spaces’,
topologizing, thick, and Serre subcategories, and the spectra Spec(X), Spec−(X), and
Spec1(X) mentioned above. Section 2 presents, for the reader’s convenience a short ex-
position of the main construction of [R6] whose applications are studied in this work.
Sections 3 and 4 are dedicated to the spectrum Spec1

t (X) introduced in [R6, 2.3.5] and
its counterpart Spec0

t (X) suggested by the general construction of Section 2. The natural
decompositions of these spectra allow to recover the spectrum Spec(X) and see some of
its important properties unnoticed earlier. In Section 5, we look at the complete spectrum
and the S-spectrum. The general pattern invoke another spectrum, Spec�(X), which is
a natural extension of Spec(X) and plays a similar role. In Section 7 we study functo-
rial properties of these spectra. In Section 8, we apply general pattern developed in the
previous sections to the spectra related with exact localizations. We start with the thick
spectrum introduced in [R5] and recover other spectra via its canonical decomposition.

In Section 9, we study local properties of the spectra with respect to finite covers. The
results we obtain here are stronger than the results in this direction obtained in [R4]. The
refinements are due to different arguments making use of a simple algebra of the monoid
of topologizing subcategories which is sketched in Appendix 1.

Section 10 is dedicated to the spectra related to reflective topologizing categories
and their local properties. The material of this section is entirely new. The general
pattern of Section 2 produce a pair spectra – Spec0

c(X) and Spec1
c(X), together with

a canonical morphism between them, which, for these particular spectra, turns out to
be an isomorphism. For an arbitrary abelian category CX , there is a natural embedding
Spec(X) ↪→ Spec0

c(X). If CX is the category of quasi-coherent sheaves on a quasi-compact
(noncommutative) scheme, then Spec0

c(X) and Spec(X) coincide.
Some time ago, O. Gabber constructed an example showing that the spectrum Spec(X)

is not sufficient to recover the underlying topological space of an arbitrary non-quasi-
compact (commutative) scheme from the category CX of quasi-coherent sheaves on the
scheme. He observed that the spectrum Spec0

c(X), on the other hand, suffices to recon-
struct the underlying space in his example which gave a ground to the conjecture that it
might suffice in the general case, under some mild restrictions. We show that this con-
jecture is, indeed, true. It follows from the local property of the spectrum Spec0

c(X) (or,
ruther, of its counterpart Spec1

c(X)) with respect to infinite covers, which we formulate
and prove in 10.6. If CX is the category of quasi-coherent sheave on a scheme X, then
Spec0

c(X) endowed with the Zariski topology (which is defined in terms of topologizing
subcategories) is naturally isomorphic to the underlying topological space of the scheme
X, under the condition that X admits an affine cover {Ui ↪→ X | i ∈ J} such that each
immersion Ui ↪→ X has a direct image functor. The latter condition holds if the scheme is
quasi-separated.

In Appendix 1, we relate topologies on spectra with some natural ’topological’ struc-
tures on the monoid of topologizing subcategories. Besides, this appendix contains facts
(mostly borrowed from [R4]) which are used in the main body of the paper, expecially
in Sections 9 and 10. Appendix 2 contains some complements on (differences between)
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spectra Spec0
t (X) and Spec(X). It is a complement to Sections 3 and 4. We consider

Spec0
t (X) and Spec(X) as topological spaces with respect to the topology associated with

topologizing subcategories and establish some general properties of these spaces. Appendix
3 contains some observations on supports of objects and the Krull filtrations. In Appendix
4, we apply the results of Section 9 to compare closed points of the S-spectrum Spec−(X)
and Spec(X). Closed points of Spec(X) play a special role due to their significance for
representation theory and algebraic geometry. The S-spectrum is oftenly easier to com-
pute than Spec(X) due to its better functorial properties. We show that, although the
S-spectrum is, usually, considerably larger than Spec(X), their closed points are in natural
bijective correspondence in many (if not all) cases of interest.

Section 10 of this work was inspired by a conversation with O. Gabber who directed
my attention to the spectrum Spec0

c(X). I am happy to thank him for that and for other
helpful remarks and discussions. A part of this text was written during my visiting the
Max Planck Institut für Mathematik in Bonn in Summer of 2004. I would like to thank the
Institute for hospitality and always excellent working atmosphere. The work was partially
supported by the NSF grant DMS-0070921.

1. Preliminaries.

1.1. ’Spaces’ and morphisms of ’spaces’. ’Spaces’ here are spaces of noncom-
mutative algebraic geometry. In the simplest (or the most abstract) setting, they are
represented by categories. Morphisms of ’spaces’ are functors regarded as inverse image
functors. We denote by CX the category representing a ’space’ X and by f∗ a functor
CY −→ CX representing a morphism X

f−→ Y . Formally, ’spaces’ are objects of the
category Catop opposite to the category Cat. The bicategory of ’spaces’ is the bicate-
gory Catop. The category of ’spaces’ is the category |Cat|o having same objects as Catop.
Morphisms from X to Y are isomorphism classes of (inverse image) functors CY −→ CX .

The ’spaces’ of this work are represented by abelian categories and morphisms have
additive inverse image functors.

1.2. Localizations and conservative morphisms. Let X be a ’space’ and Σ a
family of arrows of the category CX . We denote by Σ−1X the object of |Cat|o such that
the corresponding category coincides with (the standard realization of) the category of
fractions ot CX for Σ (cf. [GZ], 1.1): CΣ−1X = Σ−1CX . We call Σ−1X the ’space’ of

fractions of X for Σ. The canonical localization functor CX

q∗
Σ−→ Σ−1CX is regarded as an

inverse image functor of a morphism, Σ−1X
qΣ−→ X .

For any morphism f : X −→ Y in |Cat|o, we denote by Σf the family of all morphisms
s of the category CY such that f∗(s) is invertible (notice that Σf does not depend on the
choice of an inverse image functor f∗). Thanks to the universal property of localizations,
f∗ is represented as the composition of the localization functor p∗f = p∗

Σf
: CY −→ Σ−1

f CY

and a uniquely determined functor f∗
c : Σ−1

f CY −→ CX . In other words, f = pf ◦ fc for a

uniquely determined morphism X
fc−→ Σ−1

f Y .
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A morphism X
f−→ Y is called conservative if Σf consists of isomorphisms, or, equiv-

alently, pf is an isomorphism. A morphism X
f−→ Y is called a localization if fc is an

isomorphism, i.e. the functor f∗
c is an equivalence of categories.

Thus, f = pf ◦ fc is a decomposition of a morphism f into a localization and a
conservative morphism.

1.3. Topologizing subcategories of an abelian category. Fix an abelian cat-
egory CX . A full subcategory T of CX is called topologizing if it is closed under finite
coproducts and subquotients taken in CX . We denote by T(X) the preorder (with respect
to the inclusions) of topologizing subcategories of the category CX .

The Gabriel product, S •T, of the pair of subcategories S, T of CX is the full subcat-
egory of CX spanned by all objects M of CX such that there exists an exact sequence

0 −→ L −→ M −→ N −→ 0

with L ∈ ObT and N ∈ ObS. It follows that 0 • T = T = T • 0 for any strictly full
subcategory T. The Gabriel product of two topologizing subcategories is a topologizing
subcategory, and its restriction to topologizing categories is associative; i.e. topologizing
subcategories form a monoid with respect to the Gabriel multiplication.

Note that the canonical dualization isomorphism T (X) ∼−→ T (Xo), S �−→ Sop, is an
inti-isomorphism of monoids (T (X), •) −→ (T (Xo), •), that is (T • S)op = Sop • Top.

1.3.1. The preorder �. For any two objects, M and N , of CX , we write M � N
if N is a subquotient of a finite coproduct of copies of M .

Let [M ] denote the smallest topologizing subcategory containing the object M . One
can show that M � N iff [N ] ⊆ [M ]. This gives a description of [M ]: its objects are those
L ∈ ObCX for which M � L.

1.3.2. Lemma. The smallest topologizing subcategory of CX containing a family of
objects S coincides with

⋃
N∈SΣ

[N ], where SΣ denotes the family of all finite coproducts of

objects of S.

Proof. Clearly,
⋃

N∈SΣ

[N ] is contained in every topologizing subcategory containing the

family S. It is closed under taking subquotients, because each [N ] has this property. It
is closed under finite coproducts, because if N1, N2 ∈ SΣ and Ni � Mi, i = 1, 2, then
N1 ⊕ N2 � M1 ⊕ M2.

For any subcategory (or a class of objects) S, we denote by [S] the smallest topolo-
gizing subcategory containing S.

1.3.3. Lemma. Let T, S be topologizing subcategories of an abelian category CX .
(a) The smallest topologizing subcategory, [T, S], of CX containing T and S coincides

with ⋃
(L,M)∈Ob(S×T)

[L ⊕ M ]. (1)
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(b) Every S-torsion free object of [T, S] belongs to T.

Proof. (a) The assertion follows from 1.3.2.
(b) It follows from the definition of the Gabriel product that every S-torsion free object

of T • S belongs to T, and [T, S] ⊆ T • S, hence the assertion.

We leave to the reader the formulation of the analogous assertion for an arbitrary
family of topologizing subcategories.

1.4. Thick subcategories. A topologizing subcategory T of the category CX is
called thick if T•T = T. In other words, a full subcategory T of CX is thick iff the following
condition holds: the object M in an exact sequence 0 −→ M ′ −→ M −→ M ′′ −→ 0
belongs to the subcategory T iff M ′ and M ′′ are objects of T.

We denote by Th(X) the preorder of thick subcategories of CX . Given a thick sub-
category T of CX , we shall denote by X/T the quotient ’space’ defined by CX/T = CX/T .

1.5. Serre subcategories. We recall the notion of a Serre subcategory of an abelian
category as it is defined in [R, III.2.3.2]. Let T be a subcategory of CX . We denote by
T− the full subcategory of CX generated by all objects L of CX such that any nonzero
subquotient of L has a nonzero subobject which belongs to T. This construction has the
following properties [R, III.2.3.2.1]:

(a) The subcategory T− is thick.
(b) (T−)− = T−.
(c) T ⊆ T− iff any subquotient of an object of T is isomorphic to an object of T.

A subcategory T of CX is called a Serre subcategory if T− = T.

1.5.1. Note. (a) One can see that for any subcategory T of the category CX , the
associated Serre subcategory T− is the largest topologizing subcategory of CX such that
every its nonzero object has a nonzero subobject from T.

(b) It follows from this description that if the subcategory T is closed under taking
quotient objects (e.g. T is a topologizing subcategory), then T− is the largest topologizing
subcategory of CX which has the zero intersection with T⊥. Here T⊥ denotes, as usually,
the right orthogonal to T, i.e. the full subcategory of CX generated by all objects M such
that CX(L, M) = 0 for any L ∈ ObT.

1.5.2. The property (sup) and coreflective subcategories. Recall that the
category CX has the property (sup) if for any ascending chain, Ω, of subobjects of an
object M , the supremum of Ω exists, and for any subobject L of M , the natural morphism
sup(N ∩ L | N ∈ Ω) −→ (supΩ) ∩ L is an isomorphism.

Recall that a subcategory S of CX is called coreflective if the inclusion functor S ↪→ CX

has a right adjoint. In other words, the subcategory S is coreflective iff every object of CX

has a biggest subobject which belongs to S.

1.5.3. Lemma. Any coreflective thick subcategory of an abelian category CX is a
Serre subcategory. If CX has the property (sup), then any Serre subcategory of CX is
coreflective.

Proof. See [R, III.2.4.4].
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1.5.4. Note. If CX is a category with small coproducts, then a thick subcategory of
CX is coreflective iff it is closed under small coproducts (taken in CX).

1.5.5. Proposition. Let CX be a category with the property (sup). Then for every
thick subcategory T of CX , every object of T− is the supremum of its subobjects which
belong to T.

Proof. Since CX has the property (sup), the supremums of objects from T form a
thick coreflective, hence Serre, subcategory. Therefore it coincides with T−.

1.6. The spectrum Spec(X). We denote by Spec(X) the family of all nonzero
objects M of the category CX such that [L] = [M ] (or, equivalently, L � M) for any
nonzero subobject L of M . In other words, a nonzero object M of CX belongs to Spec(X)
iff it is equivalent to any of its nonzero subobjects.

In particular, every simple object of the category CX belongs to Spec(X).
The spectrum Spec(X) of the ’space’ X is the family of topologizing subcategories

{[M ] | M ∈ Spec(X)} endowed with the specialization preorder ⊇.
Let τ� denote the topology on Spec(X) associated with the specialization preorder:

the closure of W ⊆ Spec(X) consists of all [M ] such that [M ] ⊆ [M ′] for some [M ′] ∈ W .

1.6.1. Proposition. (a) The inclusion Simple(X) ↪→ Spec(X) induces an embed-
ding of the set of isomorphism classes of simple objects of CX into the set of closed points
of (Spec(X), τ�).

(b) If the category CX has enough objects of finite type, then this injection is a bijec-
tion, i.e. every closed point of (Spec(X), τ�) is of the form [M ] for some simple object M
of the category CX .

Proof. (a) If M is a simple object, then Ob[M ] consists of all objects isomorphic to
coproducts of finite number of copies of M . In particular, if M and N are simple objects,
then [M ] ⊆ [N ] iff M � N .

(b) Having enough objects of finite type means that every object of CX is the supre-
mum of its subobjects of finite type. By a standard argument, this property implies that
every nonzero object of CX has a simple quotient. Suppose, P ∈ Spec(X) is such that
[P ] is a closed point. Let M be a simple quotient of P . Since P � M and [P ] is closed,
M � P , i.e. [M ] = [P ].

Notice that the notion of a simple object of an abelian category is selfdual, i.e.
Simple(X) = Simple(Xo), where Xo is the dual ’space’ defined by CXo = Cop

X . In
particular, the map M �−→ [M ] induces an embedding of isomorphism classes of simple
objects of CX into the intersection Spec(X)

⋂
Spec(Xo).

1.6.2. Proposition. If the category CX has enough objects of finite type, then the
set of closed points of Spec(X) coincides with Spec(X)

⋂
Spec(Xo).

Proof. Since every nonzero object of CX has a nonzero subobject of finite type,
Spec(X) consists of [M ] such that M is of finite type and belongs to Spec(X). On the
other hand, if M is of finite type and [M ] belongs to Spec(Xo), then [M ] = [M1], where
M1 is a simple quotient of M . Hence the assertion.
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1.7. Local ’spaces’. A nonzero object P of an abelian category CX is called quasi-
final if N � P for every nonzero object N of CX . It follows that any quasi-final object of
CX belongs to Spec(X) and all quasi-final objects are equivalent to each other.

We call the ’space’ X (and the category CX) local if CX has a quasi-final object.
If X is local, then Spec(X) has the (unique) smallest element which coincides with

the smallest nonzero topologizing subcategory of CX and is a unique closed point of the
spectrum (in the topology associated with the preorder ⊇).

1.7.1. Proposition. Let X be local, and let the category CX have simple objects.
Then all simple objects of CX are isomorphic to each other, and every quasi-final object
of CX is isomorphic to a direct sum of a finite number of copies of a simple object.

Proof. In fact, if M is a simple object in CX , then [M ] is a closed point of Spec(X).
If X is local, this closed point is unique. Therefore, M is a quasi-final object and every
object of [M ] is a finite coproduct of copies of M (see the argument of 1.6.1).

1.8. The complete spectrum and the S-spectrum. The complete spectrum of
X is the preorder (with respect to ⊆) of all thick subcategories P of the category CX such
that X/P is a local ’space’. We denote it by Spec1(X).

The S-spectrum of X is defined as the subpreorder of Spec1(X) formed by Serre
subcategories, i.e. Spec−(X) = Spec1(X)

⋂
Se(X) = {P ∈ Spec1(X) | P = P−}.

For any M ∈ ObCX , we denote by 〈M〉 the full subcategory of CX generated by all
objects N such that N �� M . Notice that [M ] ⊆ [L] iff 〈M〉 ⊆ 〈L〉.

1.8.1. Proposition. The map [P ] �−→ 〈P 〉 induces a monomorphism of preorders
Spec(X) −→ Spec−(X).

Proof. See [R, III.2.3.3 and III.3.3.1].

1.8.2. The S-spectrum and the Gabriel spectrum. We call a ’space’ X locally
noetherian if CX is a locally noetherian abelian category. It is argued in [R, Ch. VI] that if
X is locally noetherian, then the elements of the S-spectrum are in bijective correspondence
with the set of isomorphism classes of indecomposable injectives of the category CX . In
other words, Spec−(X) is isomorphic to the Gabriel spectrum of the category CX .

1.8.2. Remark. If CX = R −mod, where R is a commutative noetherian ring, then
the Gabriel spectrum of CX (hence Spec−(X)) is isomorphic to the prime spectrum of
the ring R [Gab]. If R is a non-noetherian commutative ring, Spec−(X) might be much
bigger than the prime spectrum of R, while Spec(X) is naturally isomorphic to the prime
spectrum of R (cf. [R], Ch.3).

2. A general construction of spectra.

Fix a category H. Let H0 denote the full subcategory of H whose objects are initial
objects of H. Thus, H0 is either empty, or a groupoid. Let H1 denote the full subcategory
of H defined by ObH1 = ObH − ObH0.

2.1. Definition. We call H local if the category H1 has an initial object.

2.1.1. Note. It follows that if H is local, than H has initial objects, i.e. H0 �= ∅.
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2.2. The spectrum Spec1(H). We denote by Spec1(H) the full subcategory of the
category H generated by all x ∈ ObH such that the category x\H is local. We call Spec1(H)
the local spectrum of H.

In other words, an object x of H belongs to Spec1(H) iff there exists an object x� of

H and an arrow x
γx−→ x� such that γx is not an isomorphism and if x

f−→ y is not an

isomorphism, then there exists a unique arrow x� f̄−→ y such that f = f̄◦γx. The morphism
x

γx−→ x� (in particular, the object x�) is determined by these conditions uniquely up to
isomorphism.

2.2.1. Note. It follows from this definition and 2.1.1 that H is local iff it has initial
objects and they belong to Spec1(H).

2.2.2. Functorial properties. Let H
F−→ H̃ be a functor. For any x ∈ ObH,

the functor F induces a functor x\H Fx−→ F (x)\H̃. Suppose that the functor F is such
that Fx is an equivalence of categories for every x ∈ ObH. Then F induces a functor
Spec1(H) −→ Spec1(H̃).

A typical example is the functor

y\H f�−→ z\H, (y, y
g→ v) �−→ (z, z

gf→ v),

corresponding to a morphism z
f−→ y, or the canonical functor y\H −→ H.

2.3. Supports. For any x ∈ ObH, we denote by SuppH(x) the full subcategory of H
generated by all y ∈ ObH such that H(x, y) = ∅. We call SuppH(x) the support of x in H.

2.3.1. Proposition. (a) For any two objects, x and y, of the category H, there exists
an arrow x → y iff SuppH(x) ⊆ SuppH(y).

(b) Let {xi | i ∈ J} be a set of objects of H such that there exists a coproduct,
∐
i∈J

xi.

Then
SuppH

( ∐
i∈J

xi

)
=

⋃
i∈J

SuppH(xi). (1)

Proof. (a) If there exists a morphism x −→ y and H(x, z) = ∅, then, obviously,
H(y, z) = ∅, hence SuppH(x) ⊆ SuppH(y).

If H(x, y) = ∅, i.e. y ∈ SuppH(x), then, since y /∈ ObSuppH(y), the inclusion
SuppH(x) ⊆ SuppH(y) does not hold.

(b) Since H(
∐

i∈J xi, z) �
∏

i∈J H(xi, z), H(
∐

i∈J xi, z) = ∅ iff H(xi, z) = ∅ for some
i ∈ J , whence the equality (1).

2.3.2. Support in Spec1(H). For any x ∈ ObH, we denote the intersection
SuppH(x)

⋂
Spec1(H) by Supp1

H(x) and call it the support of x in Spec1(H). Evidently,
2.3.1(b) is still true if SuppH(x) is replaced by Supp1

H(x), as well as a half of 2.3.1(a): if
H(x, y) is not empty, then SuppH(x) ⊆ SuppH(y).

2.4. The spectrum Spec0(H). We denote by Spec0(H) the full subcategory of H
generated by x ∈ ObH such that SuppH(x) is not empty and has a final object, x̂.
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2.4.1. Proposition. Let H be local. Then initial objects of H1 belong to Spec0(H).

Proof. Let H0 be the full subcategory (groupoid) of H generated by all initial objects
of H. If x is an initial object of the category H1, then SuppH(x) coincides with H0.

In fact, suppose that there is an arrow, x
f−→ y, for some y ∈ ObH0. Since y is an

initial object of the category H, there exists a unique morphism y
g−→ x. By the universal

property of y, the composition y
fg−→ y is the identical morphism. Since x is an initial

object of the category H1, the composition x
gf−→ x is the identical morphism too. This

means that the morphism x
f−→ y is an isomorphism which contradicts to the fact that x

is not an initial object of the category H.
Thus, H0 is a subcategory of SuppH(x). Since for every z ∈ ObH1 = ObH − ObH0

there is a (unique) morphism x −→ z, the subcategory SuppH(x) is contained in H0; i.e.
SuppH(x) = H0.

Since H0 is a connected groupoid, every object of H0 is final.

2.4.4. Lemma. A choice for every x ∈ ObSpec0(H) of a final object, x̂, of the

category SuppH(x) extends to a functor Spec0(H)
ϑH−→ H.

Proof. In fact, if x, y ∈ ObSpec0(H), and there is a morphism x −→ y, then
SuppH(x) ⊆ SuppH(y). Therefore there exists a unique morphism x̂ −→ ŷ.

2.4.5. Remark. Notice that the functor Spec0(H)
ϑH−→ H is faithful iff H is a preorder,

i.e. for any pair of objects, x, y, of H, there is at most one morphism x −→ y.

2.4.6. Proposition. Suppose the category H is a preorder with finite coproducts
(i.e. supremums of pairs of objects). Then the functor Spec0(H)

ϑH−→ H takes values in

Spec1(H), i.e. it induces a functor Spec0(H)
θH

−−−→ Spec1(H).

Proof. For any x ∈ ObSpec0(H), the final object, x̂, of the category SuppH(x) belongs
to Spec1(H). More expicitly, we claim that the canonical coprojection, x̂ −→ x � x̂, is an
initial object of the category (x̂\H)1.

In fact, let x̂
g−→ y be a morphism. Then one of two things happens: either y ∈

ObSuppH(x), or not. If y ∈ ObSuppH(x), then, since x̂ is a final object of the category

SuppH(x), there is a unique morphism y
h−→ x̂. It follows from the universal property of

x̂ that h ◦ g = id
x̂
. By hypothesis, H is a preorder, in particular, h is a monomorphism.

Therefore, h is an isomorphism inverse to g.
If y /∈ ObSuppH(x), then there exists an arrow x −→ y which, together with x̂

g−→ y,
determines (and is determined by) a morphism (x� x̂, x̂ → x � x̂) −→ (y, x̂

g→ y). Since H
is a preorder, this is all we need.

2.5. Relative spectra. Let G
F−→ H be a functor. We define the relative spectra,
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Spec1(G, F ) and Spec0(G, F ), via cartesian squares

Spec1(G, F )
θ1

F−−−→ G Spec0(G, F )
ϑF−−−→ G

πF
1

⏐⏐�
⏐⏐� F and πF

0

⏐⏐�
⏐⏐� F

Spec1(H)
θ1

H

−−−→ H Spec0(H)
ϑH

−−−→ H

(1)

(in the bicategorical sense, i.e. the squares quasi-commute), where Spec0(H)
ϑH−→ H is

the canonical functor of 2.4.4.
Explicitly, objects of the category Spec1(G, F ) are triples (z, x; φ), where z is an object

of Spec1(H), x ∈ ObG, and φ is an isomorphism z ∼−→ F (x). Morphisms from (z, x; φ) to
(z′, x′; φ′) are given by pairs of arrows, z

g−→ z′ and x
h−→ x′ such that the diagram

z
g

−−−→ z′

φ
⏐⏐�� �

⏐⏐� φ′

F (x)
F (h)
−−−→ F (x′)

commutes. The projections Spec1(H)
πF

1←− Spec1(G, F )
θ1

F−→ G in the left diagram (1) are
defined by πF

1 (z, x; φ) = z and θ1
F (z, x; φ) = x.

Similarly, objects of the category Spec0(G, F ) are triples (z, x; ψ), where z is an object
of Spec0(H), x ∈ ObG, and ψ is an isomorphism ϑH(z) ∼−→ F (x).

2.5.1. Proposition. Let i be 0 or 1. The map (G, F ) �−→ Speci(G, F ) extends to
a pseudo-functor Speci : Cat/H −→ Cat.

Proof. The assertion follows from the universal property of cartesian squares.

2.5.2. Proposition. Suppose H is a preorder with finite coproducts. Then for every
functor G

F−→ H, there is a canonical functor

Spec0(G, F )
ϑ(G,F)

−−−→ Spec1(G, F ). (2)

The family {ϑ(G,F ) | (G, F ) ∈ ObCat/H} is a morphism of pseudo-functors,

Spec0
ϑ

−−−→ Spec1. (3)

Proof. Since H is a preorder with finite coproducts, the functor Spec0(H)
ϑH−→ H

takes values in Spec1(H), hence it factors through the embedding Spec1(H) −→ H (see
2.4.6). By the universal property of cartesian squares, there exists a unique functor (2)
such that θ1

F ◦ ϑ(G,F ) = ϑF and πF
1 ◦ ϑ(G,F ) = πF

0 (see the diagram (2)).
It is useful to have an explicit description of the functor (2) in terms of the descripiton

of Spec0(G, F ) and Spec1(G, F ) given above. The functor ϑ(G,F ) maps an object (z, x; ψ)
of Spec0(G, F ) to the object (ϑH(z), x; ψ) of Spec1(G, F ).

It follows from this description that ϑ = {ϑ(G,F ) | (G, F ) ∈ ObCat/H} is a morphism
of pseudo-functors.
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I. Spectra related to topologizing and thick subcategories.
Fix an abelian category CX . Let Th(X) (resp. T(X)) denote the preorder of all thick

(resp. topologizing) subcategories of CX . Applying the construction 2.5 to the inclusion

functor Th(X)
J t

X−→ T(X), we obtain two spectra,

Speci
t(X) = Speci(Th(X), Jt

X), i = 0, 1.

and (by 2.5.2) a canonical monomorphism from one to another, Spec0
t (X) −→ Spec1

t (X).
The category Spec1

t (X) is defined by the cartesian square

Spec1
t (X) −−−→ Th(X)⏐⏐�

⏐⏐�
Spec1(T(X)) −−−→ T(X)

in which the right vertical arrow and the lower horizontal arrow are inclusions (see 2.5).
It follows from this description (or from the explicit description of relative spectra in 2.5)
that objects of Spec1

t (X) are thick subcategories, P such that the intersection Pt of all
topologizing subcategories containing P properly does not coincide with P.

The spectrum Spec0
t (X) is defined by the cartesian square

Spec0
t (X) −−−→ Th(X)⏐⏐�

⏐⏐�
Spec0(T(X)) −−−→ T(X)

(1)

(see 2.5). By definition, objects of Spec0(T(X)) are topologizing subcategories, P, such
that SuppT(X)(P) has a final object. This means, precisely, that the union, P̂ , of all
topologizing subcategories which do not contain P is a topologizing subcategory. The
lower horizontal arrow of the diagram (1) maps an element P to P̂ . Thus, Spec0

t (X)
is naturally identified with the preorder of those topologizing subcategories P of CX for
which P̂ is a thick subcategory.

Similarly, the construction 2.5 applied to the incluison functor Se(X)
J s

X−→ T(X) pro-
duces two spectra

Speci
s,t(X) = Speci(Se(X),J s

X), i = 0, 1,

and a canonical injective map Spec0
s,t(X) −−−→ Spec1

s,t(X).
Here Spec1

s,t(X) consists of all Serre subcategories P such that the intersection Pt

of topogizing subcategories properly containing P contains P properly too. The spectrum
Spec0

s,t(X) is identified with the preorder of all topogizing subcategories Q of CX such
that the union Q̂ of all topologizing subcategories of CX which do not contain Q is a
Serre subcategory. It follows from these definitions that these four spectra are related by
a commutative diagram

Spec0
t (X) −−−→ Spec1

t (X)
⏐⏐

⏐⏐

Spec0
s,t(X) −−−→ Spec1

s,t(X)

(2)

11



of injective morphisms.
In the next two sections, it is shown, among other facts, that Spec0

s,t(X) coincides
with the spectrum Spec(X) and the canonical map Spec0

s,t(X) −−−→ Spec1
s,t(X) is an

isomorphism.

3. The decomposition of the spectrum Spec1
t (X).

Fix an abelian category CX . For any subcategory S of CX , we denote by St the
intersection of all topologizing subcategories of CX properly containing S. The spectrum
Spec1

t (X) is formed by thick subcategories P such that P �= Pt (see above). We set

Spec1,0
t (X) = {P ∈ Spec1

t (X) | Pt ∩ P⊥ = 0}

and
Spec1,1

t (X) = {P ∈ Spec1
t (X) | Pt ∩ P⊥ �= 0},

where P⊥ is the right orthogonal to P. Since the subcategory P is closed under taking
quotients, P⊥ coincides with the full subcategory of CX formed by all P-torsion free objects
(see 1.5.1(a)). Clearly Spec1

t (X) is the disjoint union of Spec1,1
t (X) and Spec1,0

t (X):

Spec1
t (X) = Spec1,1

t (X)
∐

Spec1,0
t (X). (1)

3.1. Remarks. (a) It follows from definitions that

Spec1,1
t (X) = {P ∈ Th(X) | Pt ∩ P⊥ �= 0}.

(b) The notion of Spec1
t (X) is selfdual, i.e. Spec1

t (X) is naturally isomorphic to
Spec1

t (X
o), where Xo is the dual ’space’: CXo = Cop

X . This is the consequence of the
selfduality of the notions of a thick and topologizing subcategories.

The definition of P0 = Pt ∩ P⊥ is not selfdual (because of P⊥), in particular, the
decomposition Spec1

t (X) = Spec1,1
t (X)

∐
Spec1,0

t (X) is not selfdual.

3.2. Proposition. (i) A thick subcategory P from Spec1
t (X) belongs to Spec1,1

t (X)
iff it is a Serre subcategory. Thus,

Spec1,1
t (X) = {P ∈ Th(X) | P− = P � Pt},

Spec1,0
t (X) = {P ∈ Th(X) | P � Pt ⊆ P−}.

(ii) The map [P ] �−→ 〈P 〉 induces an isomorphism

Spec(X) ∼−→ Spec1,1
t (X).

The inverse isomorphism assigns to every element P of Spec1,1
t (X) the topologizing sub-

category [Pt
⋂

P⊥].

Proof. (i) Suppose that P = P− � Pt. Then (Pt − P)
⋂
P− = 0 which means that

every nonzero object of Pt − P has a nonzero subquotient which has no P-torsion. Since
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Pt is a topologizing subcategory, this subquotient belongs to Pt
⋂

P⊥. In particular,
this shows that Pt

⋂
P⊥ �= 0, i.e. P is an element of Spec1,1

t (X), which proves the
inclusion Spec1

t (X)
⋂

Se(X) ⊆ Spec1,1
t (X). Here Se(X) denotes the preorder of all

Serre subcategories of CX .
Conversely, if P is a thick subcategory which is not a Serre subcategory, i.e. P � P−,

then Pt ⊆ P−. Since P− ⋂
P⊥ = 0, the inclusion Pt ⊆ P− implies that Pt

⋂
P⊥ = 0, i.e.

P �∈ Spec1,1
t (X). This shows that Spec1,1

t (X) = Spec1
t (X)

⋂
Se(X).

(ii) (a) The image of Spec(X) by the map [P ] �−→ 〈P 〉 is contained in Spec1,1
t (X)

because 〈P 〉 is a Serre (hence thick) subcategory and P ∈ 〈P 〉t
⋂
〈P 〉⊥ for every P in

Spec(X).
(b) Let P ∈ Spec1,1

t (X). If T is a topologizing subcategory of CX such that P0 =
Pt

⋂
P⊥ � T, then T ⊆ P.
In fact, suppose T � P. Then the topologizing subcategory [T,P] spanned by T and

P contains properly P, hence it contains Pt. By 1.3.3(b), every P-torsion free object of
[T,P] belongs to T; in particular, P0 = Pt

⋂
P⊥ � T.

(c) Let P ∈ Spec1,1
t (X). Every nonzero object of P0 = Pt

⋂
P⊥ belongs to Spec(X).

Let L be a nonzero object of P0 and L1 a nonzero subobject of L. Then [L1] ⊆ [L]. If
[L1] � [L], then it follows from (b) above that [L1] ⊆ P, or, equivalently, L1 ∈ ObP. This
contradicts to the assumption that the object L is P-torsion free.

(d) Let P ∈ Spec1,1
t (X). Then P = 〈L〉 for any nonzero object of P0 = Pt

⋂
P⊥.

Let L be a nonzero object of P0. Since L does not belong to the Serre subcategory
〈L〉, by (b), we have the inclusion 〈L〉 ⊆ P. On the other hand, if 〈L〉 � P, then L ∈ ObP
which is not the case. Therefore P = 〈L〉.

(e) The topologizing subcategory [P0] coincides with the subcategory [L] for any
nonzero object L of P0.

Clearly [L] ⊆ [P0] for any L ∈ ObP0. By (b), if P0 � [L], then [L] ⊆ P, hence L = 0.
Since, by (c), every nonzero object of P0 belongs to Spec(X), this shows that [P0] is

an element of Spec(X).
(f) It follows from the argument above that the map

Spec(X) −→ Spec1,1
t (X), [P ] �−→ 〈P 〉,

is inverse to the map Spec1,1
t (X) −→ Spec(X) which assigns to every P the topologizing

subcategory [P0].

3.3. Note. Suppose that the category CX has the property (sup). Then for any
P ∈ Spec1,0

t (X), the subcategory Pt −P does not have objects of finite type.
In fact, by 3.2(i), P ⊆ Pt ⊆ P−. By 2.4.7, objects of P− are supremums of their

subobjects from P. Thus, every object of P− of finite type belongs to P.

4. The spectrum Spec0
t (X).

For any subcategory (or a family of objects, or an object) B of CX , we denote by B̂
the union of all topologizing subcategories of CX which do not contain B.

4.1. Lemma. Let B be a subcategory and T a topologizing subcategory of CX . Then
B ⊆ T iff B̂ ⊆ T̂.
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Proof. If B ⊆ T and S is a topologizing subcategory of CX such that B � S, then
T � S. This shows that the inclusion B ⊆ T implies that B̂ ⊆ T̂.

Conversely, let B̂ ⊆ T̂. If B � T, then T, being a topologizing subcategory, is contained
in B̂. Together with the inclusion B̂ ⊆ T̂, this implies that T ⊆ T̂ which is impossible by
definition of T̂. Therefore, B ⊆ T.

By definition, the spectrum Spec0
t (X) is the preorder (with respect to ⊆) of all

topologizing subcategories T of CX such that T̂ is a thick subcategory.

4.2. Note. One can see that Spec0
t (X) is selfdual, i.e. Spec0

t (X
o) is naturally

isomorphic to Spec0
t (X).

4.3. Proposition. (a) The spectrum Spec0
t (X) consists of all topologizing subcate-

gories P of CX having the property:
if P ⊆ T•S for some topologizing subcategories S and T, then either P ⊆ S, or P ⊆ T.
(b) The map T �−→ T̂ induces a monomorphism

Spec0
t (X) −−−→ Spec1

t (X). (1)

(c) If T ∈ Spec0
t (X), then T = [L] for every L ∈ Ob(T − T̂ ).

Proof. (a) Suppose P ∈ Spec0
t (X), i.e. P̂ is a thick subcategory. If S and T are

topologizing subcategories which do not contain P, then they both are contained in P̂
and, since the latter is thick, T • S ⊆ P̂ .

Conversely, if for any pair of topologizing subcategories S, T of P̂ their Gabriel product
T • S is a subcategory of P̂ , then P̂ is thick, i.e. P belongs to Spec0

t (X).
(b) The assertion (b) is a special case of the general nonsense fact 2.4.6. It is useful

to specialize the argument. Let T ∈ Spec0
t (X), and let S be a topologizing subcategory

of CX properly containing T̂ . Then it follows from the definition of T̂ that T ⊆ S, or,
equivalently, [T , T̂ ] ⊆ S. This shows that (T̂ )t = [T , T̂ ]. Since T � T̂ , the subcategory T̂
is properly contained in (T̂ )t, i.e. T̂ belongs to Spec1

t (X). The injectivity of the map (1)
follows from 4.1.

(c) If B is a subcategory of T , then, by 4.1, B̂ ⊆ T̂ . If, in addition, B � T̂ and T̂ is
a topologizing subcategory, then T̂ ⊆ B̂, hence T̂ = B̂. If B is a topologizing subcategory,
the latter equality means that T = B. Taking B = [L] for any object L from T − T̂ , we
obtain the equality T = [L].

4.3.1. Note. Let (G,≤) be a preordered monoid. We call a non-unit element x of G
prime if the set {s ∈ G | x ≥ s} is a submonoid of G.

It follows from 4.3(a) that Spec0
t (X) is the set of all prime elements of the preordered

monoid ((T(X), •),⊆) of topologizing subcategories of CX .

4.4. Proposition. The decomposition Spec1
t (X) = Spec1,1

t (X)
∐

Spec1,0
t (X)

induces, via the canonical map Spec0
t (X) −→ Spec1

t (X) (cf. 4.3(b)), a decomposition

Spec0
t (X) = Spec(X)

∐
Spec0,0

t (X) (2)
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Proof. For every object L of Spec(X), the category L̂ = [̂L] coincides with the
subcategory 〈L〉, because if a topologizing subcategory T does not contain L, it is contained
in 〈L〉. By 3.2(ii), the map [L] �−→ 〈L〉 is an isomorphism Spec(X) ∼−→ Spec1,1

t (X).
Therefore, the preimage of Spec1,1

t (X) in Spec0
t (X) coincides with Spec(X).

Thus, the map (1) in 4.3 is the coproduct of the isomorphism Spec(X) ∼−→ Spec1,1
t (X)

and the map
Spec0,0

t (X) −−−→ Spec1,0
t (X), T �−→ T̂ . (3)

It follows that Spec0,0
t (X) consists of all topologizing subcategories T such that T̂ belongs

to Th(X)− Se(X).

4.4.1. Note. Proposition 4.4 gives the following description of Spec(X): it con-
sists of all topologizing subcategories P of CX such that the union P̂ of all topologizing
subcategories which do not contain P is a Serre subcategory.

4.4.2. Corollary. Suppose that CX is a noetherian category (i.e. every object of CX

is noetherian). Then Spec1
t (X) = Spec1,1

t (X) and Spec0
t (X) = Spec(X).

Proof. Let CX be an arbitrary abelian category, and let T be a full subcategory of
CX closed under finite coproducts and quotients. Then every noetherian object of CX has
the largest subobject which belongs to T .

In fact, if M is a noetherian object, then the set ST (M) of subobjects of M which
belong to T has a maximal element, MT . If N is any other element of ST (M), then the
image of the natural morphism MT ⊕ N −→ M belongs to T (thanks to the assumptions
on T ) and contains MT . Due to the maximality of MT , the image of MT ⊕ N −→ M
coincides with MT , hence N is a subobject of MT .

This shows that if all objects of the category CX are noetherian, than the subcategory
T is coreflective. In particular, every topologizing and every thick subcategory of CX

is coreflective. By 2.4.5, thick coreflective subcategories are Serre subcategories. The
assertion follows now from 3.2 and 4.4.

4.4.3. Examples. The conditions of 4.4.2 are fulfilled if CX is the category of finitely
generated modules over a left noetherian ring, or the category of quasi-coherent sheaves
on a noetherian scheme, or the category of coherent D-modules on a noetherian scheme.

4.5. Representatives of Spec0
t (X) and representatives of Spec(X). Let

Spec0
t (X) denote the family of all objects M of CX such that [M ] ∈ Spec0

t (X). In
other words, an object M belongs to Spec0

t (X) iff the union [̂M ] of all topologizing sub-
categories of CX which do not contain M is a thick subcategory. We consider Spec0

t (X)
together with the specialization preorder �, which is precisely the preorder induced by the
specialization preorder ⊇ on Spec0

t (X).
The decomposition

Spec0
t (X) = Spec(X)

∐
Spec0,0

t (X)

induces the decomposition

Spec0
t (X) = Spec(X)

∐
Spec0,0

t (X).
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4.5.1. Proposition. Let CX have the property (sup). Then an object M of finite
type belongs to Spec0

t (X) iff it belongs to Spec(X).

Proof. Let M be an object of Spec0
t (X). Suppose that M ∈ [̂M ]

−
. Then, by 2.4.7, M

is the supremum of its subobjects from [̂M ]. Therefore, if M is of finite type, it belongs to

[̂M ] which is impossible by the definition of [̂M ]. This shows that [̂M ] = [̂M ]
−

, i.e. [̂M ] is
a Serre subcategory. Therefore, by 3.2(i), [M ] ∈ Spec(X).

4.5.2. Corollary. Let CX have the property (sup) and enough objects of finite type
(i.e. every nonzero object of CX has a nonzero subobject of finite type). Then Spec0,0

t (X) is
a subset of all [M ] ∈ Spec0

t (X) such that the subcategory [M ]−[̂M ] does not contain objects
of finite type. Or, equivalently, Spec(X) = {[M ] ∈ Spec0

t (X) | M is of finite type}.
4.5.3. Corollary. Let CX = R − mod for an associative ring R. The set of all left

ideals m such that R/m belongs to Spec0
t (X) coincides with the left spectrum, Spec�(R) of

the ring R.

Proof. By 4.5.2, if the module R/m belongs to Spec0
t (X), then it belongs to Spec(X).

By [R, III.4.2], the left spectrum Spec�(R) consists of all left ideals m such that the quotient
module R/m belongs to Spec(X).

The reader is encouraged to look into Appendix 2 for more details about the spectra
Spec0

t (X) and Spec(X).

5. The complete spectrum and the general construction.

5.1. Invariant topologizing subcategories and localizations. Fix an abelian
category CX . Let T and S be topologizing subcategories of CX . We say that the subcate-
gory T is S-invariant if T = S • T • S.

It follows from this definition that for any topologizing subcategory T, the smallest
T-invariant topologizing subcategory is the thick envelope T∞ =

⋃
n≥1

T•n of T, which is the

smallest thick subcategory containing T. In particular, T is T-invariant iff it is thick.
On the other hand, T is S-invariant iff T is S∞-invariant. In particular, if T is S-

invariant, then S∞ ⊆ T.
If T1 is T0-invariant and T2 is T1-invariant, then T2 is T0-invariant, because in this

case we have: T2 ⊆ T0 • T2 • T0 ⊆ T1 • T2 • T1 = T2.
Given a thick subcategory S of the category CX , let T (X, S) denote the preorder

(with respect to ⊆) of S-invariant topologizing subcategories. Note that the inclusion
T (X, S) ↪→ T (X) has a left inverse (a left adjoint), T (X) −→ T (X, S) which maps every
topologizing subcategory T to the S-invariant topologizing subcategory S • T • S.

5.1.1. Lemma. Let S be a thick subcategory of the category CX and CX
q∗
−→ CX/S

the localization functor. Then for any topologizing subcategory T of CX , the topologizing
subcategory [q∗(T)] of CX/S spanned by q∗(T ) is generated by all objects of CX/S isomor-
phic to objects of q∗(T ), and its preimage in CX , q∗

−1
([q∗(T)]), coincides with S • T • S.

In other words, q∗
−1

([q∗(T)]) is the smallest S-invariant subcategory of CX containing T.
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Proof. It follows that [q∗(T)] =
⋃

M∈ObT

[q∗(M)]. Let q∗(M) � q∗(L), i.e. there exists

a diagram q∗(M)⊕n ←− q∗(N) −→ q∗(L) in which the left arrow is a monomorphism
and the right arrow is an epimorphism. To this diagram, there corresponds a diagram
M⊕n ←− N ′ −→ N ←− N ′′ −→ L such that q∗ maps the arrows N ′ −→ N ←− N ′′ to
isomorphisms. Completing N ′ −→ N ←− N ′′ to a cartesian square

N ′ −−−→ N
⏐⏐

⏐⏐

K ′ −−−→ N ′′

and taking the compositions of the arrows M⊕n ←− N ′ ←− K ′ and K ′ −→ N ′′ −→ L,

we obtain a diagram, M⊕n j′←− K ′ e′−→ L such that q∗(j′) is a monomorphism and q∗(e′)
is an epimorphism. Representing arrows j′ and e′ as compositions of an epimorphism and
a monomorphism, we obtain the diagram

M⊕n j←− K
s′
←− K ′ e′

−→ L′ t′−→ L

in which j is a monomorphism, e′ is an epimorphism, and q∗(s′), q∗(t′) are isomorphisms.

Taking a push-forward of the pair of arrows K
s′
←− K ′ e′

−→ L′, we obtain a commutative
diagram

M⊕n
j

←−−− K
e

−−−→ L1

s′

⏐⏐


⏐⏐ t

K ′ e′
−−−→ L′ t′

−−−→ L

in which j is a monomorphism, e is an epimorphism, and q∗(t), q∗(t′) are isomorphisms.
Therefore q∗(L1) � q∗(L) and M � L1. The latter implies that if M ∈ ObT, then
L1 ∈ ObT.

5.1.2. Corollary. Let S be a thick subcategory of CX and CX
q∗
−→ CX/S = CX/S the

localization functor. The map T �−→ q∗
−1

(T) induces an isomorphism

T (X/S) ∼−→ T (X, S)

between the preorder of topologizing subcategories of the quotient category CX/S = CX/S
the preorder of S-invariant topologizing subcategories of CX .

5.2. The complete spectrum. Fix an abelian category CX . Recall that the
complete spectrum, Spec1(X), of X is formed by thick subcategories P of CX such that
the quotient category CX/P = CX/P is local. The latter means that the category CX/P
has the smallest nonzero topologizing subcategory.

For every thick subcategory S of CX , let S� denote the intersection of all S-invariant
topologizing subcategories of CX properly containing S.
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5.2.1. Proposition. A thick subcategory P of the category CX belongs to Spec1(X)
iff there exists the smallest P-invariant topologizing subcategory properly containing P. In
other words, Spec1(X) = {P ∈ Th(X) | P �= P�}.

Proof. The assertion follows from 5.1.2.

5.2.2. Corollary. Spec1
t (X) ⊆ Spec1(X).

5.2.3. The preorder T̃(X) and the complete spectrum. Let T̃(X) denote the
preorder whose objects are topologizing subcategories of CX and morphisms are identical
morphisms and inclusions S ↪→ T such that T is S-invariant. It follows from the discussion
at the beginning of 5.1 that the composition of morphisms is a morphism.

Notice that Th(X) is a subpreorder of T̃(X), because if S ↪→ T and T is thick, then
T ⊆ S • T • S ⊆ T • T • T = T, that is T is S-invariant. In particular, the preorder Se(X)
of Serre subcategories is a subpreorder of T̃(X).

5.2.3.1. Lemma. For every topologizing subcategory S of CX , there is a natural iso-
morphism of preorders S\T̃(X) ∼−→ T̃(X/S∞), where S∞ is the smallest thick subcategory
containing S.

Proof. The assertion follows from 5.1.2.

Applying the general construction to the inclusion functor Th(X)
J̃X−−−→ T̃(X), we

obtain the spectra Speci(Th(X), JX), i = 0, 1. and a canonical monomorphism

Spec0(Th(X), J̃X) −−−→ Spec1(Th(X), J̃X).

5.2.3.2. Proposition. Spec1(Th(X), J̃X) = Spec1(X).

Proof. The preorder Spec1(Th(X), J̃X) is defined by the cartesian square

Spec1(Th(X), J̃X) −−−→ Th(X)⏐⏐�
⏐⏐�

Spec1(T̃(X)) −−−→ T̃(X)

In other words, the objects of Spec1(Th(X), J̃X) are thick subcategories P of CX

such that there exists the smallest P-invariant topologizing subcategory of CX properly
containing P. Comparing this description with 5.2.1, one can see that Spec1(Th(X), J̃X)
coincides with Spec1(X).

5.2.4. Note. The ’abslolute’ spectrum, Spec1(T̃(X)), of the preorder T̃(X) is the
(obviously, disjoint) union of Spec1(Th(X), J̃X) = Spec1(X) and T̃(X) − Th(X).

In fact, if P ∈ Spec1(X), then there exists the smallest P-invariant topologizing
subcategory P� of CX properly containing P. The pair (P,P ↪→ P�) is, evidently, the
initial object of the category P\T̃(X). If T is a topologizing, but not thick, subcategory of
CX , then (T, T ↪→ T∞) is the initial object of the category T\T̃(X); hence T is an object
of Spec1(T̃(X)).
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5.2.5. The spectrum Spec0(X). We denote Spec0(Th(X), J̃X) by Spec0(X). It
follows that objects of Spec0(X) are topologizing subcategories T such that the union T̂
of all topologizing subcategories which are not T -invariant belongs to Spec1(X). In par-
ticular, T̂ is thick, hence it coincides with the union of all thick subcategories of CX which
do not contain T . This discussion together with the inclusion Spec1

t (X) ⊆ Spec1(X) of
5.2.2 shows that there is a commutative diagram

Spec0
t (X) −−−→ Spec0(X)⏐⏐�

⏐⏐�
Spec1

t (X) −−−→ Spec1(X)

(1)

whose horizontal arrows are inclusions and vertical arrows are injective.

5.3. A canonical decomposition of the complete spectrum and the S-
spectrum. For every element P of Spec1(X), we set P� = P� ⋂

P⊥; i.e. P� is the
full subcategory of P� generated by all P-torsion free objects of P�. Similarly to Section
3, we have a decomposition

Spec1(X) = Spec1,1(X)
∐

Spec1,0(X), (2)

where

Spec1,0(X) = {P ∈ Th(X) | P� = 0} and Spec1,1(X) = {P ∈ Th(X) | P� �= 0}.

Recall that the S-spectrum, Spec−(X), of the ’space’ X is formed by all Serre subcat-
egories P of CX such that the quotient ’space’ X/P is local. In other words, Spec−(X) =
Spec1(X)

⋂
Se(X), where Se(X) is the preorder of all Serre subcategories of CX .

We have the following analogue of 3.2(i):

5.3.1. Proposition. A thick subcategory P from Spec1(X) belongs to Spec1,1(X)
iff it is a Serre subcategory. Thus,

Spec1,1(X) ={P ∈ Th(X) | P− = P � P�} = Spec−(X)

Spec1,0(X) ={P ∈ Th(X) | P � P� ⊆ P−}.

Proof. Suppose P = P− � P�. Then every nonzero object of P� − P has a nonzero
subquotient which has no P-torsion. Since P� is a topologizing subcategory, this subquo-
tient belongs to P� ⋂

P⊥. In particular, this shows that P� ⋂
P⊥ �= 0, that is P is an

element of Spec1,1(X), which proves the inclusion Spec1(X)
⋂

Se(X) ⊆ Spec1,1(X).
Here Se(X) denotes the preorder of all Serre subcategories of CX .

Conversely, if P is a thick subcategory which is not a Serre subcategory, i.e. P � P−,
then P� ⊆ P−, because P− (as any thick subcategory containing P) is P-invariant. Since
P− ⋂

P⊥ = 0, the inclusion P� ⊆ P− implies that P� ⋂
P⊥ = 0, i.e. P �∈ Spec1,1(X).

This shows that Spec1,1(X) = Spec1(X)
⋂

Se(X) = Spec−(X).
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5.4. The preorder T̃(X) and the S-spectrum. General pattern associate with

the inclusion functor Se(X)
J̃ s

X−−−→ T̃(X) the spectra Speci(Se(X),J s
X), i = 0, 1, and a

canonical monomorphism

Spec0(Se(X), J̃ s
X) −−−→ Spec1(Se(X), J̃ s

X).

5.4.1. Proposition. Spec1(Se(X), J̃ s
X) = Spec−(X).

Proof. By 5.2.3.2, Spec1(Th(X), J̃X) coincides with the complete spectrum Spec1(X)
This implies that Spec1(Se(X), J̃ s

X) is the S-spectrum Spec−(X) of the ’space’ X .

6. The spectrum Spec�(X).

For every subcategory (or a family of objects) B of the category CX , let B� denote
the union of all thick subcategories of CX which are left orthogonal to B.

Clearly, B� ⊆ D� if D ⊆ B, and (B�)⊥ is the largest subcategory among the subcat-
egories B′ of CX such that B′

� = B�.

6.1. Lemma. If the subcategory B is closed under taking subobjects, then B� is a
Serre subcategory.

Proof. In fact, suppose that B−
�
�= B�, and let M be an object of B−

�
− B�.

The condition M �∈ ObB� means that for some object M ′ of [M ]•, there is a nonzero
morphism N

g−→ M ′ with N ∈ ObB. The image M ′′ of the morphism g is a nonzero object
of B−

� . In particular, it has a nonzero subobject L from B�. Thus, we have a cartesian
square

N ×
M′′ L −−−→ L⏐⏐�

⏐⏐�
N −−−→ M ′′

whose vertical arrows are monomorphisms and horizontal arrows are epimorphisms. Since
B is closed under taking subobjects, in particular N ×

M′′ L is an object of B, we run into
a contradiction.

6.2. The functor L� and the related spectrum. Let T≤(X) denote the preorder
(with respect to ⊆) of full subcategories of CX closed under taking subobjects and finite
coproducts. Let L� denote the morphism of preorders T≤(X) −→ Se(X) which maps
every object B of T≤(X) to the Serre subcategory B� (defined in 6.1). And let L′

� be the
composition of L� and the inclusion Se(X) ↪→ T̃(X). The morphism L′

� gives rise to the
spectrum Spec1(T≤(X), L�) defined via the cartesian square

Spec1(T≤(X), L′
�) −−−→ T≤(X)⏐⏐�

⏐⏐� L′
�

Spec1(T̃(X)) −−−→ T̃(X)

(1)

20



Since the morphism L′
� takes values in the preorder Se(X) of Serre subcategories,

the spectrum Spec1(T≤(X), L′
�) coincides with the spectrum Spec1(T≤(X), L�) defined

by the cartesian square

Spec1(T≤(X), L�) −−−→ T≤(X)⏐⏐�
⏐⏐� L�

Spec−(X) −−−→ Se(X)

(2)

In other words, objects of Spec1(T≤(X), L�) are naturally identified with objects B
of T≤(X) such that the Serre subcategory B� belongs to the S-spectrum Spec−(X).

6.3. The spectrum Spec�(X). We denote by Spec�(X) the preorder (with
respect to the inclusion) of full nonzero subcategories B of the category CX such that
B = (B�)⊥

⋂
(B�)� and B� ∈ Spec−(X).

It follows from the discussion above that Spec�(X) ⊆ Spec1(T≤(X), L�).

6.4. Proposition. The map B �−→ B� induces an isomorphism

Spec�(X) −−−→ Spec−(X)

with the inverse map P �−→ P� = P� ∩ P⊥.

Proof. Let P ∈ Spec−(X). The subcategory P� = P� ∩ P⊥ is closed under taking
subobjects, hence, by 6.1, (P�)� is a Serre subcategory. This Serre subcategory contains
P, because all objects of P� are right orthogonal to P. If (P�)� would contain P properly,
then it would contain P�, which is impossible. Therefore (P�)� = P. This shows that
P �−→ P� maps Spec−(X) to Spec�(X).

On the other hand, if B belongs to Spec�(X), i.e. 0 �= B = (B�)⊥
⋂

(B�)�, then
B� ∈ Spec−(X).

6.5. Representatives of points of Spec�(X). For every subcategory A of CX , we
denote by [A) the smallest full subcategory of CX which contains A and is closed under
taking subobjects and finite coproducts.

For every M ∈ CX , we write [M) instead of [M, idM). We denote by Spec�(X) the
family of all objects M of CX such that [M)� ∈ Spec−(X). Objects of Spec�(X) are
regarded as representatives of the corresponding points of Spec�(X).

It follows that Spec(X) ⊆ Spec�(X) and the map

Spec�(X) −−−→ Spec−(X), M �−→ [M)�, (3)

is an extension of the map Spec(X) −→ Spec−(X), P �−→ 〈P 〉.
We define a preorder � on Spec�(X) by M � N ⇔ [N)� ⊆ [M)�. If M and

N are objects of Spec(X), then [N)� = 〈N〉 and [M)� = 〈M〉. Therefore in this case
M � N ⇔ 〈N〉 ⊆ 〈M〉 ⇔ [N ] ⊆ [M ] ⇔ M � N ; i.e. the restriction of the preorder � to
Spec(X) coincides with the specialization preorder � on Spec(X).
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6.5.1. Proposition. Suppose that P ∈ Spec1(X) is such that the localization functor

CX
q∗
P−→ CX/P has a right adjoint, qP∗ (in particular, P ∈ Spec−(X)) and the quotient

category CX/P has a simple object, L. Then [qP∗(L)) = P� = P� ∩ P⊥.

Proof. In fact, for every L ∈ ObCX/P, the object qP∗(L) is P-torsion free, i.e. it
belongs to P⊥, and q∗PqP∗(L) � L. Therefore, if L is a quasi-final object, then qP∗(L)
belongs to P� = P� ∩ P⊥. In particular, [qP∗(L)) ⊆ P�. In order to prove the inverse
inclusion, notice that any nonzero object M of P� is a subobject of qP∗(q∗P(M)); in
particular, M is an object of the subcategory [qP∗(q∗P(M))). Since M is a nonzero object
of P�, its image q∗P(M) is a quasi-final object of CX/P. Therefore q∗P(M) is isomorphic to
the coproduct of a finite set of copies of the simple object L, which implies that qP∗q

∗
P(M)

is isomorphic to the coproduct of a finite number of copies of qP∗(L). It follows that
the subcategories [qP∗(q∗P(M))) and [qP∗(L)) coincide. In particular, M is an object of
[qP∗(L)). This proves the inverse inclusion P� ⊆ [qP∗(L)).

6.5.2. The case of Grothendieck categories. Suppose that CX is a Grothendieck
category. Then the localization functor at any Serre subcategory has a right adjoint. If
CX has Gabriel-Krull dimension (cf. A3.7), then for every P ∈ Spec−(X), the quotient
category CX/P has a unique (up to isomorphism) simple object, LP .

The map P �−→ qP∗(LP) takes values in Spec�(X) and is a section of the map

Spec�(X) −−−→ Spec−(X), M �−→ [M)�.

Thus, in the case when CX has a Gabriel-Krull dimension, the map P �−→ qP∗(LP)
is a canonical (defined uniquely up to isomorphism) choice of representatives of points of
the spectrum Spec�(X). For a general Grothendieck category CX , this gives a canonical
choice of a representative for every point Q of Spec�(X) such that the category CX/Q�

has simple objects.

7. Functorialities.

7.1. Lemma. Let T be a topologizing subcategory of an abelian category CX and |T|
a ’space’ defined by C|T| = T.

(a) For every S ∈ Th(|T|), there exists the biggest and the smallest thick subcategory
of CX , resp. S− and S+, such that S− ∩ T = S = S+ ∩ T.

(b) If S is a Serre subcategory of T, then S+ is a Serre subcategory of CX , and
S− ∩ T = S.

Proof. (a) Let T(X ; T,S) denote the preorder of all topologizing subcategories B of
CX such that B∩T ⊆ S. Notice that T(X ; T,S) is closed under the Gabriel multiplication:
if B′, B′′ are elements of T(X ; T,S) and 0 −→ M ′ −→ M −→ M ′′ −→ 0 is an exact
sequence such that M ′ ∈ ObB′, M ′′ ∈ ObB′′ and M ∈ ObT, then M ′ and M ′′ are objects
of S, hence M is an object of S. Therefore, the union S+ of all B from T(X ; T,S) is a thick
subcategory of CX such that S+ ∩T ⊆ S. Since S is a subcategory of S+, the intersection
S+∩T coincides with S. This also implies that the intersection S−∩T ⊆ S of the smallest
thick subcategory of CX containing S with T coincides with S.

(b) Suppose now that S is a Serre subcategory of T. Then S−
+ ∩ T = S.
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In fact, let M be an object of S−
+ ∩T; and let L be a nonzero subquotient of M . Since

T is closed with respect to taking subquotients, there exists a diagram in M ←− K −→ L
in T whose left arrow is a monomorphism and the right arrow is an epimorphism. By
definition of S−

+ , the object L has a nonzero subobject which belongs to S+, hence it
belongs to S+ ∩ T = S. This shows that M is an object of S−. Therefore S−

+ ∩ T = S−
T

.
Here S−

T
denotes the Serre envelope of S in T. In particular, if S is a Serre subcategory of

T (i.e. S = S−
T

), then S−
+ ∩ T = S = S− ∩ T.

For a subcategory T of CX , we set

U1(T) = {P ∈ Spec1(X) | T ⊆ P}
V 1(T) = Spec1(X) − U1(T) = {P ∈ Spec1(X) | T � P}.
U−(T) = U1(T) ∩ Se(X) and V −(T) = V 1(T) ∩ Se(X)

(1)

The following assertion can be extracted from [R, Ch.6]. For the reader’s convenience,
we give here a (mostly different) proof.

7.2. Proposition. Let T be a topologizing subcategory of CX and T∞ the smallest
thick subcategory of CX containing T.

(a) V 1(T) = V 1(T∞) and U1(T) = U1(T∞). The map

U1(T) −→ Spec1(X/T∞), P �−→ P/T∞, (2)

is an isomorphism.
(b) V −(T) = V −(T−) and U−(T) = U1(T−). The map

U−(T) −→ Spec−(X/T−), P �−→ P/T−, (3)

is an isomorphism.
(c) For every P ∈ V 1(T), the intersection P ∩T is an element of Spec1(|T|), and the

map
V 1(T) −→ Spec1(|T|), P �−→ P ∩ T, (4)

is an isomorphism. The inverse map is given by P̃ �−→ P̃+ (see 7.1).
Here |T| is defined by C|T| = T.

(d) For every P ∈ V −(T), the intersection P ∩ T is an element of Spec1(|T|), and
the map (2) induces an isomorphism V −(T) −→ Spec−(|T|).

Proof. (a) Since elements of Spec1(X) are thick subcategories, U1(T) = U1(T∞),
hence V 1(T) = V 1(T∞). Clearly P �−→ P/T∞ maps U1(T∞) to Spec1(X/T∞). The
inverse map assigns to every element P̃ of Spec1(X/T∞) the thick subcategory q∗

−1
(P̃),

where q∗ is the localization functor CX −→ CX/T∞ .
(b) The argument is similar to that of (a).
(c) Let P ∈ V 1(T), that is P is a thick subcategory of CX such that X/P is local

and T � P. The composition of the inclusion functor T ↪→ CX and the localization
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CX
q∗
P−→ CX/P is an exact functor with the kernel P ∩T, hence it factors uniquely through

the localization T −→ T/(T ∩ P). Thus, we have a commutative diagram

T ∩ P −−−→ T
q∗

−−−→ T/(T ∩ P)⏐⏐�
⏐⏐�

⏐⏐� j∗

P −−−→ CX

q∗
P−−−→ CX/P

(5)

in which the two left vertical arrows are inclusion functors. It follows that the right arrow
in (5) is a fully faithful functor which induces an equivalence between T/(T ∩ P) and a
nonzero topologizing subcategory of CX/P . Every nonzero topologizing subcategory of a
local category is local. Therefore T/(T ∩ P) is a local category. The latter means that
T ∩ P ∈ Spec1(|T|).

(c1) Let now P̃ be an element of Spec1(|T|). By 7.1, there is the biggest topologizing
subcategory P̃+ of CX (which happens to be thick) such that P̃ = T∩ P̃+. We claim that
P̃+ is an element of Spec1(X).

In fact, let B be a topologizing P̃+-invariant subcategory of CX properly containing
P̃+. Then B ∩ T contains P̃ properly; because if B ∩ T = P̃ , then B ⊆ P̃+. Clearly, the
subcategory B ∩ T is P̃-invariant. Therefore it contains the subcategory P̃�. This shows
that (P̃+)� = P̃+ • P̃� • P̃+ is the smallest P̃+-invariant topologizing subcategory of CX

properly containing P̃+; so that P̃+ belongs to Spec1(X). Thus, the map

Spec1(|T|) −→ V 1(T), P̃ �−→ P̃+,

is a right inverse to the map (4). It remains to show that the map (4) is injective.
(c2) Let P̃ ∈ Spec1(|T|); and let P1 and P2 be elements of V 1(T) such that P1 ∩T =

P̃ = P2 ∩ T. Replacing X by X/(P1 ∩ P2), we can (and will) assume that P̃ = 0. In
particular, |T| is local. Let M be a quasi-final object of T. Notice that the composition

of the embedding T ↪→ CX with the localization functor CX

q∗
P1−→ CX/P1 is a fully faithful

functor T −→ CX/P1 which induces an equivalence between T and a nonzero topologizing
subcategory of the category CX/P1 (see the diagram (5)). Therefore the image q∗P1

(M) of
the object M is a quasi-final object of CX/P1 . This implies that P1 = 〈M〉.

In fact, P1 ⊆ 〈M〉, because M �∈ ObP1. On the other hand, if P1 �= 〈M〉, then 〈M〉
(being a thick subcategory containing P1, hence P1-invariant) contains the object M which
cannot happen, because M ∈ Spec(|T|) ⊆ Spec(X).

By the same reason, P2 = 〈M〉, hence P2 = P1.
(d) The assertion follows from (c) and 7.1(b). Details are left to the reader.

7.3. Corollary. Let P1 and P2 be elements of Spec1(X) such that P�
1 ∩ P2 ⊆ P1.

Then P2 ⊆ P1.

Proof. The assertion follows from 7.2(c) applied to T = P�.

For a subcategory T of CX , we set

U�(T) ={P� ∈ Spec�(X) | T ∩ P� = 0}
V�(T) =Spec�(X) − U�(T) = {P� ∈ Spec�(X) | T ∩ P �= 0}.

(6)
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7.4. Proposition. Let T be a topologizing subcategory of CX .
(a) V�(T) = V�(T−) and U�(T) = U�(T−). The map

U�(T) −→ Spec�(X/T−) (7)

which assigns to an element P of U�(T) the strictly full subcategory of CX/T− generated
by the image of P, is an isomorphism.

(b) For every P ∈ V�(T), the intersection P ∩ T is an element of Spec�(|T|), and
the map

V�(T) −→ Spec�(|T|), P �−→ P ∩ T, (8)

is an isomorphism.

Proof. The assertion follows from 7.2 and 6.4. Details are left to the reader.

7.5. Proposition. Let P1 and P2 be elements of Spec−(X). Then either P2 ⊆ P1,
or P�

1 ∩ P⊥
1 ∩ P2 �= 0.

Proof. Replacing X by X/(P1 ∩ P2), we assume that P1 ∩ P2 = 0. If P1 is nonzero,
then (by 7.2(c)) |P1| is local. Let M1 be a quasi-final object of P1. The argument of
7.2(c) shows that P2 = 〈M1〉. If P2 is nonzero, then, by the same reason, |P2| is local and
P1 = 〈M2〉 for a quasi-final object M2 of P2. Therefore, Pt

1 = [[M2], 〈M2〉] = [[M2],P1]
is the smallest topologizing subcategory Pt properly containing P1. By 1.3.3, Pt

1 ∩ P⊥
1 is

contained in P2.

8. Spectra related with localizations and their canonical decompositions.

Spectra discussed in this section were first introduced in [R5]. Here we follow the
general pattern dictated by [R6] (Section 2) and similar to those of the previous sections.

8.1. The thick spectra. Fix an abelian category CX . The thick spectra, Spec0
Th(X)

and Spec1
Th(X), of the ’space’ X are the spectra of the preorder (Th(X),⊆), i.e. they are

defined by
Speci

Th(X) = Speci(Th(X)), i = 0, 1,

and there is a canonical morphism

Spec0
Th(X) −−−→ Spec1

Th(X). (1)

For any subcategory B of CX , let B� denote the intersection of all thick subcategories
of CX containing properly B, and let B̂ denote the union of all thick subcategories which
do not contain B. The spectra Spec1

Th(X) and Spec0
Th(X) and the morphism (1) can be

described as follows.
Objects of Spec1

Th(X) are thick subcategories T of CX such that T� �= T.
The spectrum Spec0

Th(X) is formed by all thick subcategories Q such that the union
Q̂ of all thick subcategories of CX which do not contain Q is a thick subcategory.

The canonical morphism Spec0
Th(X) −−−→ Spec1

Th(X) maps every object Q of
Spec0

Th(X) to the corresponding thick subcategory Q̂.
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8.2. Proposition. (a) If T1, T2 are thick subcategories, then T1 ⊆ T2 iff T̂1 ⊆ T̂2

(b) The canonical map

Spec0
Th(X) −−−→ Spec1

Th(X), Q �−→ Q̂, (4)

is injective. In particular, the induced maps

Spec0,1
Th(X) −→ Spec1,1

Th(X) and Spec0,0
Th(X) −→ Spec1,0

Th(X). (5)

are injective.

Proof. (a) The implication T1 ⊆ T2 ⇒ T̂1 ⊆ T̂2 holds for any pair subcategories T1, T2.
If the category T2 is thick and T1 � T2, then T2 ⊆ T̂1. In particular, T̂1 � T̂2, whence

the assertion (a).
(b) It follows from (a) that the map T �−→ T̂ induces a monomorphism of preorders

Spec0
Th(X) −→ Spec1

Th(X).

8.3. The canonical decompositions of the thick spectra. We represent the
thick spectrum Spec1

Th(X) as the disjoint union of Spec1,1
Th(X) and Spec1,0

Th(X), where

Spec1,1
Th(X) ={T ∈ Th(X) | T � ∩ T ⊥ �= 0}

Spec1,0
Th(X) ={T ∈ Spec1

Th(X) | T � ∩ T ⊥ = 0}.
(1)

8.3.1. Proposition. A thick subcategory T from Spec1
Th(X) belongs to Spec1,1

Th(X)
iff it is a Serre subcategory. Thus,

Spec1,1
Th(X) ={P ∈ Th(X) | P− = P � P�}

Spec1,0
Th(X) ={P ∈ Th(X) | P � P� ⊆ P−}.

(2)

Proof. The argument is similar to that of 3.2(i).

8.3.2. The decomposition of Spec0
Th(X). The decomposition (1) induces, via the

map Spec0
Th(X) −→ Spec1

Th(X), a decomposition

Spec0
Th(X) = Spec0,1

Th(X)
∐

Spec0,0
Th(X). (3)

8.4. The spectra Spec0
s(X) and Spec1

s(X). Applying the general construction to

the inclusion functor Se(X)
J s

X−−−→ Th(X), we obtain the spectra Speci(Se(X),J s
X), i =

0, 1, together with the canonical monomorphism

Spec0(Se(X),J s
X) −−−→ Spec1(Se(X),J s

X).
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We shall write Speci
s(X) instead of Speci(Se(X),J s

X). Consider the canonical commuta-
tive diagram

Spec0
s(X) −−−→ Spec1

s(X)⏐⏐�
⏐⏐�

Spec0
Th(X) −−−→ Spec1

Th(X)

(6)

8.4.1. Proposition. The diagram (6) induces the commutative diagram of isomor-
phisms

Spec0
s(X) −−−→ Spec1

s(X)
�
⏐⏐�

⏐⏐��
Spec0,1

Th(X) −−−→ Spec1,1
Th(X)

(7)

whose vertical arrows are isomorphisms.

Proof. It follows from the general definitions that Spec1
s(X) is naturally identified

with the preorder of all Serre subcategories P of CX such that P �= P�. By 8.3.1, this
preorder coincides with Spec1,1

Th . The rest is a consequence of the definition of Spec0
s(X).

Details are left to the reader.

Our next objective is to describe the component Spec0,1
Th(X) = Spec0

s(X) of the
spectrum Spec0

Th(X).

8.4.2. Specs(X). We denote by Specs(X) the class of all nonzero objects L of CX

such that [L1]• = [L]• for any nonzero subobject L1 of L. Equivalently, Specs(X) consists
of objects L such that if there exists a nonzero morphism N −→ L, then L ∈ Ob[M ]•. We
consider Specs(X) together with the preorder � defined by L � M iff [M ]• ⊆ [L]•.

8.4.3. Proposition. The spectrum Spec0
s(X) coincides with {[L]• | L ∈ Specs(X)}.

Proof. (a) If a nonzero object L is such that [L1]• = [L]• for any nonzero subobject
L1 of L, then [L]• ∈ Spec0,1

Th(X), i.e. L̂ ∈ Spec1,1
Th(X).

(a1) In fact, if T is a thick subcategory, then L �∈ ObT iff L belongs to T⊥. Because if

there is a nonzero arrow N
f−→ L with N ∈ ObT, then T ⊇ [N ]• ⊇ [im(f)]• = [L]•. This

shows that L is right orthogonal to L̂.
(a2) If L ∈ ObL̂−, then, since L �= 0, it has a nonzero subobject, M , which belongs to

L̂. But, this is impossible, because, according to (b1), L is right orthogonal to L̂. Thus,
L �∈ ObL̂− which means that L̂ = L̂−, i.e. L̂ is a Serre subcategory.

(b) Notice that Spec0,1
Th(X) consists precisely of all T ∈ Spec0

Th(X) such that the
intersection T ∩ T̂ ⊥ is nonzero.

In fact, if T̂ is a Serre subcategory, then every nonzero object of T − T̂ has a nonzero
T̂ -torsion free subquotient. The latter is an object of T ∩ T̂ ⊥.

(c) If T ∈ Spec0
Th(X), then T = [L]• for every object L of T − T̂ .

Since L �∈ ObT̂ and T̂ is a thick subcategory, we have the inclusion T̂ ⊆ [̂L]• = L̂.
The inverse inclusion follows from the inclusion [L]• ⊆ T and 8.2(a).
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(d) If L is a nonzero object of T ∩ T̂ ⊥, then every nonzero object, L1, of L belongs
to T ∩ T̂ ⊥. By (c), [L]• = T = [L1]•. This shows that L belongs to Specs(X), hence, by
(a), T = [L]• is an element of Spec0

s(X).

8.5. The spectrum Specs
�(X). Starting with the functor

T≤(X)
L�

−−−→ Se(X), B �−→ B�,

(see 6.2) and the embedding Spec1
s(X) −→ Se(X), we come, mimiking 6.2 and 6.3, to

the preorder Specs
�(X) of all full nonzero subcategories B of the category CX such that

B = (B�)⊥
⋂

(B�)� and B� ∈ Spec1,1
Th(X).

8.5.1. Proposition. The map B �−→ B� induces an isomorphism

Specs
�(X)

∼−−−→ Spec1,1
Th(X) (8)

with the inverse map P �−→ P� = P� ∩ P⊥.

Proof. The argument is similar to the proof of 6.4. Details are left to the reader.

8.6. Connections with the other spectra. The inclusion maps

Spec1,1
t (X) ↪→ Spec−(X) ↪→ Spec1,1

Th(X)

are a part of the commutative diagram

Spec1,1
t (X) −−−→ Spec−(X) −−−→ Spec1,1

Th(X)
∼←−−− Spec1

s(X)

�

⏐⏐ �


⏐⏐

⏐⏐�


⏐⏐
Spec(X)

α
−−−→ Spec�(X)

β
−−−→ Specs

�(X) ←−−− Spec0
s(X)

(9)

in which four arrows are isomorphisms and the remaining arrows are injective. Here the
map Spec(X) α−→ Spec�(X) assigns to each element P of Spec(X) the intersection

(〈P〉 • P • 〈P〉) ∩ 〈P〉⊥, and Spec�(X)
β−→ Spec0,1

Th(X) transforms any element P� =
P� ∩ P⊥ of Spec�(X) (– the image of P ∈ Spec−(X)) into the subcategory P� ∩ P⊥.
The vertical isomorphisms are defined by resp.

P �−→ [Pt ∩ P⊥], P �−→ P� = P� ∩ P⊥ and P �−→ P� = P� ∩ P⊥.

8.7. Spectra defined by the preorder of Serre subcategories.

Let H be the preorder Se(X) of all Serre subcategories of the category CX . Thus, we
have two spectra and an embedding:

Spec0(Se(X)) −−−→ Spec1(Se(X)).
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We change the notations setting Speci
Se(X) = Speci(Se(X)), i = 0, 1.

It follows from the definitions that objects of Spec1
Se(X) are all Serre subcategories

P such that the intersection Ps of all Serre subcategories of CX properly containing P
does not coincide with P. The spectrum Spec0

Se(X) is formed by all Serre subcategories
Q such that the union 〈Q〉s of all Serre subcategories of CX which do not contain Q is a
Serre subcategory: 〈Q〉s = 〈Q〉−s .

8.7.1. Proposition. There are natural injective morphisms of preorders

Speci
s(X) −−−→ Speci

Se(X), i = 0, 1,

such that the diagram
Spec0

s(X) −−−→ Spec0
Se(X)⏐⏐�
⏐⏐�

Spec1
s(X) −−−→ Spec1

Se(X)

(10)

commutes.

Proof. The morphism Spec1
s(X) −−−→ Spec1

Se(X) is the inclusion. The morphism
Spec0

s(X) −−−→ Spec0
Se(X) assigns to each object Q of Spec0

s(X) the associated Serre
subcategory Q−.

The diagram (10) can be combined with the diagram (9) above. In particular, we
have a commutative diagram

Spec(X) −−−→ Spec0
s(X) −−−→ Spec0

Se(X)
�
⏐⏐�

⏐⏐�
⏐⏐�

Spec1,1
t (X) −−−→ Spec1

s(X) −−−→ Spec1
Se(X)

(11)

whose lower horizontal arrows are embeddings. The diagram (11) can be, in turn, extended
to a commutative diagram including other spectra of this work. This exercise is left to
the reader. If CX is a category with Gabriel-Krull dimension, then it follows from (the
argument of) [R5, 8.7.1] that Spec−(X) = Spec1

s(X) = Spec1
Se(X).

II. Local properties of spectra.
9. Spectra and (co)covers. Local properties of the spectra with respect to

finite (co)covers.

Fix an abelian category CX . We call a set {Ti | i ∈ J} of thick subcategories of CX a
cocover of X , or a thick cocover of X if

⋂
i∈J

Ti = 0. The latter condition means that the

corresponding family of exact localizations {CX
u∗

i−→ CX/Ti | i ∈ J} is conservative (i.e.
it reflects isomorphisms), i.e. the morphisms {X/Ti

ui−→ X | i ∈ J} form a cover of X .

9.1. Proposition. Let a set {Ti | i ∈ J} of thick subcategories of an abelian category
CX be a cocover, i.e.

⋂
i∈J

Ti = 0. Then for every P ∈ Spec1,1
t (X), there exists an i ∈ J

such that Ti ⊆ P.
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Proof. Let P ∈ Spec1,1
t (X), and let Q be the image of P in Spec(X); that is P = Q̂.

It follows that Ti � P = Q̂ iff Q ⊆ Ti. Since
⋂
i∈J

Ti = 0, there are i ∈ J such that Q � Ti,

or, equivalently, Ti ⊆ Q̂ = P.

9.2. Corollary. For any thick cocover {Ti | i ∈ J} of X, there is an embedding
Spec1,1

t (X) ↪→
⋃
i∈J

Spec1,1
t (X/Ti). Here Spec1,1

t (X) and Spec1,1
t (X/Ti) are identified with

their images in Spec1
Th(X).

Proof. It follows from 9.1 that Spec1,1
t (X) =

⋃
i∈J

U1,1
t (Ti), where U1,1

t (Ti) = {P ∈

Spec1,1
t (X) | Ti ⊆ P}. By A2.2.1.1, for each i ∈ J , there is a natural embedding

U1,1
t (Ti) −→ Spec1,1

t (X/Ti), hence the assertion.

9.3. Proposition. Let a set {Ti | i ∈ J} of thick subcategories of an abelian category
CX be a cocover. Then for every Q ∈ Spec0

Th(X), there exists i ∈ J such that Q � Ti.
If J is finite, then for every P ∈ Spec1

Th(X), there exists i ∈ J such that Ti ⊆ P.

Proof. The first assertion is true by a trivial reason: elements of Spec0
Th(X) are

nonzero subcategories and
⋂
i∈J

Ti = 0.

Let P ∈ Spec1
Th(X). Notice that Ti � P iff the thick subcategory Ti � P spanned by

Ti and P contains P properly, hence it contains P�. Therefore, if Ti � P for all i ∈ J ,
then P� ⊆

⋂
i∈J

(Ti � P). Since J is finite, it follows from A1.4.1 that

P� ⊆
⋂
i∈J

(Ti � P) =
( ⋂

i∈J

Ti

)
� P = 0 � P = P,

which is impossible because P� �= P.

9.4. Corollary. If {Ti | i ∈ J} is a finite thick cocover of X, then

Spec1
Th(X) =

⋃
i∈J

Spec1
Th(X/Ti). (1)

Here Spec1
Th(X/Ti) is identified with its image in Spec1

Th(X).

Proof. The fact follows from 9.3.

9.5. Proposition. Let {Ti | i ∈ J} be a finite thick cocover of X. Then

Spec1(X) =
⋃
i∈J

Spec1(X/Ti). (2)
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If CX has the property (sup), then

Spec−(X) =
⋃
i∈J

Spec−(X/T −
i ),

Spec1
Se(X) =

⋃
i∈J

Spec1
Se(X/T −

i ).
(3)

Proof. (a) The equality (2) follows from 9.4, because Spec1(X) ⊆ Spec1
Th(X).

(b) By A1.4.1, the equality
⋂
i∈J

Ti = 0 implies that
⋂
i∈J

T −
i = 0, i.e. the set {T −

i | i ∈

J} of Serre subcategories form a cocover. Therefore, the inclusions

Spec1
Se(X) ⊆

⋃
i∈J

Spec1
Se(X/T −

i ) and Spec1(X) ⊆
⋃
i∈J

Spec1(X/Ti)

follows from 9.3 and the inclusions Spec1(X) ⊆ Spec1
Se(X) ⊆ Spec1

Th(X).
(b1) If T is a coreflective thick subcategory of CX , then a thick subcategory S con-

taining T is a Serre subcategory iff S/T is a Serre subcategory.
Let u∗ denote the localization functor CX −→ CX/T . Let M be an object of S−−T ,

and L̃ a nonzero subquotient of the image u ∗ (M) of M in CX/T −. By a standard
argument, L̃ is isomorphic to u ∗ (L), where L is a subquotient of M . Since T − is a
coreflective subcategory (thanks to the property (sup)), we can choose L to be T −-torsion
free. Since M ∈ ObS−, the object L, being a nonzero subquotient of M , has a nonzero
subobject L1 from S which is T −-torsion free. Therefore, u∗(L1) is a nonzero subobject
of L̃ which belongs to S/T −. This shows that u∗

i (M) is an object of (S/T −)−. But,
(S/T −)− = S/T − by hypothesis, hence M belongs to S.

(b2) Since CX has the property (sup), every Serre subcategory of CX is coreflective, in
particular, T −

i , i ∈ J, are coreflective subcategories. The assertion follows now from (b1)
above: Spec1

Se(X/T −
i ) realized as a subset of Spec1

Th(X) consists of Serre subcategories,
hence is contained in Spec1

Se(X). Similarly with Spec−(X/T −
i ) realized as a subset of

Spec1(X).

9.6. Local property of Spec1,1
t (X).

9.6.1. Proposition. Let {Ti | i ∈ J} be a finite set of thick subcategories of the
category CX such that

⋂
i∈J

Ti = 0. The following conditions on a thick subcategory P of

CX are equivalent:
(a) P ∈ Spec1,1

t (X),
(b) P ∈ Spec1

Se(X) and P/Ti ∈ Spec1,1
t (X/Ti) for every i ∈ J such that Ti ⊆ P.

If the category CX has the property (sup), then the conditions (a) and (b) are equiv-
alent to the condition

(c) P ∈ Spec1
Th(X) and P/Ti ∈ Spec1,1

t (X/Ti) for every i ∈ J such that Ti ⊆ P.
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Proof. (a) ⇒ (b). Let P ∈ Spec1,1
t (X), and let T be a thick subcategory of CX

contained in P. Then (T • Pt • T )/T is the smallest topologizing subcategory of CX/T
properly containing P/T , and the localization functor CX

u∗
−→ CX/T maps nonzero

objects of Pt = Pt ∩ P⊥ to nonzero objects of (P/T )t = (P/T )t
⋂

(P/T )⊥.
(b) ⇒ (a). Let u∗

i denote the localization functor CX −→ CX/Ti. Set JP = {j ∈
J | Tj ⊆ P}. For every i ∈ JP , we denote by Q̃i the intersection u∗−1

i ((P/Ti)t)
⋂
P⊥

and by Qi the topologizing subcategory [Q̃i] spanned by Q̃i. By assumption, Q̃i �= 0 for
each i ∈ JP , hence Qi � P. The latter implies that, for every j ∈ JP , the topologizing
subcategory [u∗

j (Qi • P)] contains (P/Tj)t, or, equivalently, u∗−1

j ((P/Ti)t) ⊆ Tj • Qi • P.
Therefore,

Q̃j = u∗−1

j ((P/Tj)t)
⋂

P⊥ ⊆ (Tj • Qi • P)
⋂

P⊥ = (Tj • Qi)
⋂

P⊥ ⊆ Tj • Qi

which implies the inclusion Qj ⊆ Tj • Qi for every (i, j) ∈ JP × JP , hence

Qj ⊆
⋂

i∈JP

(Tj • Qi) = Tj •
( ⋂

i∈JP

Qi

)
.

Here the equality is due to the finiteness of JP .
It follows from the inclusion Qj ⊆ Tj •

( ⋂
i∈JP

Qi

)
that

⋂
i∈JP

Qi �= 0, because other-

wise Qj ⊆ Tj • 0 = Ti, which is impossible, since Tj ⊆ P and Qj � P.
There are two cases: J = JP and J �= JP . Consider each of them.
(i) Let JP = J . We set Q =

⋂
i∈JP

Qi and claim that Q is an element of Spec(X)

corresponding to P, that is P = 〈Q〉.
In fact, let S is a topologizing subcategory of CX which is not contained in P. Then

P is properly contained in S • P and, therefore, u∗−1

i ((P/Ti)t) ⊆ Ti • S • P for each i ∈ J .
This implies that u∗−1

i ((P/Ti)t)
⋂
P⊥ ⊆ Ti • S • P

⋂
P⊥ ⊆ Ti • S. Therefore,

Q̃ =
⋂
i∈J

u∗−1

i ((P/Ti)t)
⋂

P⊥ ⊆
⋂
i∈J

(Ti • S) =
( ⋂

i∈J

Ti

)
• S = 0 • S = S,

which implies that Q = [Q̃] ⊆ S.

(ii) Consider now the second case: JP �= J , i.e. JP = J − JP is non-empty. This case
can be reduced to the first case as follows.

1) Set CVP =
⋂

j∈JP
Tj . Notice that CVP � P.

In fact, if i ∈ JP = J−JP , then Ti � P. Therefore, for every j ∈ JP , the topologizing
subcategory [u∗

j (Ti • P)] contains (P/Tj)t, or, equivalently, u∗−1

j ((P/Tj)t) ⊆ Tj • Ti • P,

which implies that Q̃j = u∗−1

j ((P/Tj)t)
⋂
P⊥ ⊆ (Tj • Ti)

⋂
P⊥. Thanks to the finiteness

of JP , we obtain:

Q̃j ⊆
( ⋂

i∈JP
(Tj • Ti)

)⋂
P⊥ =

(
Tj •

( ⋂
i∈JP

Ti

))⋂
P⊥. (4)
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The inclusion
⋂

i∈JP
Ti ⊆ P implies (together with (4)) that Q̃j ⊆ Tj ⊆ P, which is

impossible. So that
⋂

i∈JP
Ti � P.

2) Since CVP � P, the intersection P0 = CVP
⋂
P is an element of Spec1

Se(VP).
Notice that {Ti ∩ CVP = T̃i | i ∈ JP} is a cocover of VP , i.e.

⋂
j∈JP

T̃j = 0. It remains to

notice that P0/T̃j ∈ Spec1,1
t (VP/T̃j) for each j ∈ JP .

In fact, the localization functor CX −→ CX/Tj induces an equivalence of CVP /T̃j

and the topologizing subcategory (Tj •CVP • Tj)/Tj of CX/Tj . The subcategory P0/T̃j

of CVP /T̃j is the preimage of the intersection of the P/Tj ∈ Spec1,1
t (X/Tj) with the

topologizing subcategory (Tj • CVP • Tj)/Tj , hence it belongs to Spec1,1
t (VP/T̃j).

3) Thus, the ’space’ VP , the cocover {T̃i | i ∈ JP}, and the point P0 = P
⋂

CVP of the
spectrum Spec1

Se(VP) satisfy the conditions (b) with all T̃i being subcategories of P0. By
2) above, P0 belongs to the spectrum Spec1,1

t (VP), and P0 = 〈Q̃0〉VP = 〈Q0〉VP , where
Q0 is the smallest topologizing subcategory of (CVP , hence) CX containing Q̃0. Therefore,
Q0 is a point of the spectrum Spec0

t (X) and 〈Q0〉X = P.
Obviously, (b) ⇒ (c) without additional conditions on the category CX . Suppose now

that CX has the property (sup).
(c) ⇒ (b). It follows from (c) that P ∈ Spec1

s(X), i.e. P is a Serre subcategory.
In fact, by A1.4.1, the equality

⋂
i∈J

Ti = 0 implies that
⋂
i∈J

T −
i = 0. In other words,

{T −
i | i ∈ J} is a finite cocover, which implies, by the local property of Spec1

Th(X) that
T −

i ⊆ P for some i ∈ J . Notice that if T −
i ⊆ P, then P/T −

i belongs to Spec1,1
t (X/T −

i ).
This follows from the fact that P/Ti is, by the condition (c), an element of Spec1,1

t (X/Ti),
and the spectrum Spec1,1

t is functorial with respect to localizations (see the proof of
(a) ⇒ (b) above), in particular, with respect to CX/Ti −→ CX/T −

i .
Therefore, P/T −

i is a Serre subcategory of the quotient category CX/T −
i . Thanks

to the property (sup), the Serre subcategory T −
i is coreflective. By the argument 9.5(b1),

this implies that P is a Serre subcategory of CX .

9.6.2. Note. Proposition 9.6.1 is a stronger statement than [R4, 6.3] in all respects.
The equivalence (a) ⇔ (b) is essentially the assertion of [R4, 6.3], but the argument
presented here is valid for arbitrary abelian categories, while the proof of [R4, 6.3] used
the property (sup). The equivalence (a) and (b) to (c) (when CX has the property (sup))
is a new observation (which could of be made in [R4]).

9.7. Spec1,1
t (X) and Spec−(X). Let U = {Ui

ui−→ X | i ∈ J} be a set of morphisms

such that their inverse image functors CX
u∗

i−→ CUi
are exact localizations. We call U a

cover if the family {u∗
i | i ∈ J} of inverse image functors is conservative, i.e. it reflects

isomorphisms. We set

Spec1,1
℘ (U) = {P ∈ Spec−(X) | if Ker(u∗

i ) ⊆ P, then P/Ker(u∗
i ) ∈ Spec1,1

t (Ui)}.
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There is a canonical embedding Spec1,1
t (X) −→ Spec1,1

℘ (U). By 9.6.1, if the cover U
is finite then this embedding is an isomorphism.

Recall that the associated points of the object M in Spec(X) are elements Q of
Spec(X) such that M has a nonzero subobject from Q∩ Q̂⊥.

9.7.1. Proposition. Let CX be an abelian category with property (sup). Let U =
{Ui

ui−→ X | i ∈ J} be a finite cover of the ’space’ X such that all morphisms Uij =
Ui ∩ Uj

uij−→ Ui are continuous. Let Pi ∈ Spec1,1
t (Ui), and let Li be an object of Spec(Ui)

such that Pi = 〈Li〉.
The following conditions are equivalent:
(a) P = u∗−1

i (Pi) belongs to Spec1,1
t (X); i.e. P = 〈M〉 for some object M of Spec(X);

(b) for any j ∈ J such that u∗
ij(Li) �= 0, the object u

ji∗u
∗
ij(Li) of CUj

has an associated
point; i.e. it has a subobject Lj which belongs to Spec(Uj);

(c) P/Ker(u∗
j ) = Pj belongs to Spec1,1

t (Uj) for all j such that Ker(u∗
j ) ⊆ P.

Proof. (a)⇒(c) follows from 3.2(ii) and the functoriality of Spec (hence Spec1,1
t ) with

respect to localizations.
(c)⇒(a) follows from 9.6.1.
(b)⇒(c). Suppose that Ker(u∗

j ) ⊆ P, or, equivalently, u∗
ij(Li) �= 0. Then Pj =

P/Ker(u∗
j ) is a point of Spec1(Uj). Let Ui

uij←− Ui ∩ Uj = Uij
uji−→ Uj be the canonical

embeddings. Since Li ∈ Spec(Ui) and u∗
ij(Li) �= 0, it follows that u∗

ij(Li) ∈ Spec(Uij).
Let Lj be a nonzero subobject of u

ji∗u
∗
ij(Li), and Lj ∈ Spec(Uj). Then u∗

ji(Lj)
is a nonzero subobject of u∗

ij(Li). Therefore, since u∗
ij(Li) belongs to Spec(Uij), the

objects u∗
ji(Lj) and u∗

ij(Li) are equivalent. Notice that, it follows from Pi = 〈Li〉 that
Pi/Ker(u∗

ij) = 〈u∗
ij(Li)〉. But, Pi/Ker(u∗

ij) = Pj/Ker(u∗
ji) = P/Ker(u∗

jiu
∗
j ) and, by the

argument above, 〈u∗
ij(Li)〉 = 〈u∗

ji(Lj)〉. Together with the fact that Lj is an object of
Spec(Uj), this shows that Pj = 〈Lj〉.

(a)⇒(b). Suppose that P = u∗−1

i (Pi) belongs to Spec1,1
t (X); i.e. P = 〈M〉 for some

object M of Spec(X). Let L̃i be a P-torsion free object of CX such that u∗
i (L̃i) � Li.

The relation u∗
i (M) � Li means that there exists a diagram M⊕n j←− K

e−→ L1
g−→ L̃i in

which e is an epimorphism, the arrows j and g are nonzero monomorphisms; in particular,
M � L1. Notice that L1 � M , i.e. M and L1 are equivalent. In fact, u∗

i (L1) is a nonzero
subobject of Li. Since the latter belongs to Spec(Ui), they are equivalent. Therefore,
u∗

i (L1) is equivalent to u∗
i (M). The relation u∗

i (L1) � u∗
i (M) is expressed by a diagram

L⊕m
1

j′←− K̃
e′−→ M1

h−→ M in which e′ is an epimorphism and j′ and h are nonzero
monomorphisms. Since M ∈ Spec(X), M1 is equivalent to M , hence the relation L1 � M1

which is explicit in the diagram above, implies that L1 � M . Thus L1 ∈ ObSpec(X).
By the functoriality of Spec with respect to exact localizations, u∗

j (L1) = Lj belongs to
Spec(Uj). Since L1 is P-torsion free, the adjunction arrow Lj = u∗

j (L1) −→ uji∗u
∗
jiu

∗
j (L1)

is a monomorphism. On the other hand,

uji∗u
∗
jiu

∗
j (L1) � uji∗u

∗
iju

∗
i (L1) −→ uji∗u

∗
iju

∗
i (L̃i) � uji∗u

∗
ij(Li), (5)

where the arrow in the middle is the image of the monomorphism L1 −→ L̃i. Since all
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functors in the diagram (5) are left exact, this arrow is a monomorphism. Altogether gives
the desired monomorphism Lj −→ uji∗u

∗
ij(Li).

9.7.2. Example. Let CX be the category of quasi-coherent sheaves on a quasi-
compact quasi-separated scheme X = (X ,OX ). Let {Ui ↪→ X | i ∈ J} be an affine
cover and CUi

the category of quasi-coherent sheaves on (Ui,OUi
). Then all morphisms

Ui ∩ Uj −→ Ui are continuous and the equivalent conditions (a), (b), (c) hold for every
point Pi ∈ Spec1,1

t (Ui). This reflects the fact that Spec(Ui) is naturally identified with
Ui and is an open subset of the spectrum Spec(X) � Spec1,1

t (X). It follows from 9.6.1
that Spec1,1

t (X) =
⋃
i∈J

Spec1,1
t (Ui). So, Proposition 9.7.1 becomes trivial in the case of

commutative schemes. It is non-trivial and meaningful in the case of noncommutative
schemes, even in the case of D-schemes.

9.7.3. Example: simple holonomic D-modules. Let CX be the category of
holonomic D-modules on a smooth quasi-compact scheme X = (X ,OX ). Let {Ui ↪→
X | i ∈ J} be an affine cover of X, and let CUi

be the category of holonomic D-modules on
the affine subscheme (Ui,OUi

). Then all morphisms Ui ∩Uj −→ Ui are continuous and the
equivalent conditions (a), (b), (c) hold for every simple object Li of CUi

. The latter is due
to the fact that direct and inverse image functors of open immersions preserve holonomicity.
Thanks to the fact that all holonomic D-modules are of finite length, the ’space’ X (i.e. the
category CX) has the Gabriel-Krull dimension zero, hence elements of Spec(X) are in a
bijective correspondence with isomorphism classes of holonomic simple objects. Therefore,
it follows from 9.7.1 and 9.6.1 that Spec1,1

t (X) =
⋃
i∈J

Spec1,1
t (Ui). Thus, the problem of

the description of simple holonomic modules on a smooth quasi-compact scheme is local:
it can be reduced to the affine case.

Consider, for instance, the cover of the flag variety G/B of a reductive algebraic
connected group G over C (or any other algebraicly closed field of zero characteristic) by
translations Uw, w ∈ W, of the big Schubert cell (here, as usual, W denotes the Weyl group
of G. Then for any w ∈ W , the category CUw

is equivalent to the category An − mod of
left modules over the Weyl algebra An. So the problem of a classification of holonomic
D-modules on G/B is reduced to the problem of classification of holonomic modules on
the affine n-dimensional space An, that is holonomic An-modules.

9.7.4. Proposition. Let CX have the property (sup), and let {Ti | i ∈ J} be a
finite set of Serre subcategories of the category CX such that

⋂
i∈J

Ti = 0. Suppose that

Spec1,1
t (X/Ti) = Spec−(X/Ti) for all i ∈ J . Then Spec1,1

t (X) = Spec−(X); i.e. the
map

Spec(X) −→ Spec−(X), P �−→ 〈P〉,

is an isomorphism.

Proof. By 9.6.1, Spec1,1
t (X) coincides with

{P ∈ Spec−(X) | P/Ti ∈ Spec1,1
t (X/Ti) if Ti ⊆ P}.
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By 9.5, Spec−(X) =
⋃
i∈J

Spec−(X/Ti). In particular,

Spec−(X) = {P ∈ Spec−(X) | P/Ti ∈ Spec−(X/Ti) if Ti ⊆ P}.

Hence the assertion.

9.7.5. Example. Let CX be the category of quasi-coherent sheaves on a smooth
quasi-compact scheme X = (X ,OX ) of dimension n. Let CA be the category of D-modules
on X and CA

u∗−→ CX the pull-back functor corresponding to the embedding of the struc-
ture sheaf OX into the sheaf DX of differential operators on X . Let U = {Ui

ui−→ X | i ∈ J}
be an affine finite cover of X such that each Ui is isomorphic to the affine space An. Then
Spec−(A) =

⋃
i∈J

Spec−(|An − mod|), where An is the n-th Weyl algebra.

9.7.5.1. The case of a curve. Suppose n = 1, i.e. X is a curve. Then Spec1,1
t (X)

and Spec−(X) coincide.
In fact, the equality holds when CX is the category of left modules over the first Weyl

algebra A1. This follows from the fact that A1 has Gabriel-Krull dimension one, hence
Spec−(X) consists of closed points and one generic point.

In the general case, the equality follows from this and 9.7.4.

9.7.5.2. Corollary. Let CA be the category U(sl2) − mod0 of U(sl2)-modules with
the trivial central character. Then Spec−(A) = Spec(A).

Proof. The fact is true if the base field is of positive characteristic, because then
U(sl2) is finite-dimensional over its center.

Suppose that the base field is of characteristic zero. The category CA = U(sl2)−mod0

is equivalent to the category D(P1) of D-modules on the one-dimensional projective space.
The assertion follows from 9.7.4.

9.8. Reconstruction of quasi-compact schemes.

9.8.1. Geometric center of a ’space’. Let CX be an abelian category. Fix
a topology τ on Spec(X). The map ÕX,τ which assigns to every open subset W of
Spec(X) the center of the quotient category CX/SW , where SW =

⋂
Q∈W

Q̂, is a presheaf

on (Spec(X), τ). Recall that the center of the category CY is the (commutative) ring of
endomorphisms of its identical functor. If CY is a category of left modules over a ring R,
then the center of CY is naturally isomorphic to the center of R.

We denote by OX,τ the associated sheaf. The ringed space ((Spec(X), τ),OX,τ) is
called the geometric center of the ’space’ X . If τ is the Zariski topology, then we write
simply (Spec(X),OX) and call this ringed space the Zariski geometric center of X . Recall
that open sets in Zariski topology are sets of the form U(T) = {Q ∈ Spec(X) | Q �
T}, where T is an arbitrary bireflective topologizing subcategory of CX . Recall that
’bireflective’ means that the inclusion functor T ↪→ CX has right and left adjoints.

Let X = (X ,OX ) be a ringed topological space and U = (U ,OU ) j−→ (X ,OX ) an
open immersion. Then the morphism j has an exact inverse image functor j∗ and a fully
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faithful direct image functor j∗. This implies that Ker(j∗) is a Serre subcategory of the
category OX −Mod of sheaves of OX -modules and the unique functor

OX −Mod/Ker(j∗) −−−→ OU −Mod

induced by j∗ is an equivalence of categories [Gab, III.5].
Suppose now that X = (X ,OX ) is a scheme and QcohX the category of quasi-coherent

sheaves on X. The inverse image functor j∗ of the immersion j maps quasi-coherent sheaves
to quasi-coherent sheaves. Let u∗ denote the functor QcohX −→ QcohU induced by
j∗. The funtor u∗, being the composition of the exact full embedding of QcohX into
OX −Mod and the exact functor j∗, is exact; hence it is represented as the composition of
an exact localization QcohX −−−→ QcohX/Ker(u∗) and a uniquely defined exact functor
QcohX/Ker(u∗) −−−→ QcohU. If the direct image functor j∗ of the immersion j maps
quasi-coherent sheaves to quasi-coherent sheaves, then it induces a fully faithful functor
QcohU

u∗−−−→ QcohX which is right adjoint to u∗. In particular, the canonical functor
QcohX/Ker(u∗) −−−→ QcohU is an equivalence of categories.

The reconstruction of a scheme X from the category QcohX of quasi-coherent sheaves
on X is based on the existence of an affine cover {Ui

ui−→ X | i ∈ J} such that the canonical
functors QcohX/Ker(u∗

i ) −−−→ QcohUi
, i ∈ J, are category equivalences. It follows from

the discussion above (or from [GZ, I.2.5.2]) that this is garanteed if the inverse image
functor QcohX

ui−→ QcohUi
has a fully faithful right adjoint.

9.8.2. Proposition. Let X = (X ,OX ) be a quasi-compact scheme such that there
exists an affine cover {Ui

ui−→ X | i ∈ J} such that the canonical functors

QcohX/Ker(u∗
i ) −−−→ QcohUi

, i ∈ J,

are category equivalences. Then
(a) The scheme X is isomorphic to the Zariski geometric center ((Spec(X), τz),OX)

of the ’space’ X, where CX = QcohX, τz is the Zariski topology on X and OX is the sheaf
of commutative rings defined in 9.6.4.

(b) For every open immersion U u−→ X such that QcohX/Ker(u∗) −→ QcohU is a
category equivalence, Ker(u∗) is a Serre subcategory of QcohX. In particular, Ker(u∗

i ) is
a Serre subcategory for all i ∈ J .

Proof. (a) Set CUi
= QcohUi

and Ti = Ker(u∗
i ). Since X is quasi-compact, we can

and will assume that J is finite. The condition that {Ui
ui−→ X | i ∈ J} is a cover means

precisely that
⋂
i∈J

Ti = 0.

(a1) Let x be a point of the underlying space X of the scheme X. Let Ix̄ be the
defining ideal of the closure x̄ of the point x and Mx̄ the quotient sheaf O/Ix̄. Set
Jx = {i ∈ J | Mx̄ �∈ ObTi}. We claim that Qx = [Mx̄] is an element of Spec(X).

For every i ∈ Jx, the object u∗
i (Mx̄) of the category CUi

belongs to Spec(Ui) and
Spec(Ui), because CUi

is (equivalent to) the category of modules over a ring. Therefore,
[u∗

i (Qx)] = [u∗
i (Mx̄)] is an element of Spec(Ui). By 9.6.1, Qx ∈ Spec(X).
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(a2) Conversely, let Q be an element of Spec(X). Let Q � Ti, or, equivalently,
Ti ⊆ Q̂. By the functoriality of Spec(X) under exact localizations, [u∗

i (Q)] is an element of
Spec(Ui). Since Ui is affine, Spec(Ui) is in bijective correspondence with the underlying
space Ui of the subscheme Ui = (Ui,OUi

); in particular, to the element [u∗
i (Q)] there

corresponds a point x of Ui which we identify with its image in X . Notice that the point
x does not depend on the choice of i ∈ JQ̂ = {j ∈ J | Tj ⊆ Q̂}. This gives a map
Spec(X) −→ X which is inverse to the map X −→ Spec(X) constructed in (a1) above.
These maps are homeomorphisms in the case if the cover consists of one element, i.e. the
scheme is affine. The general case follows from the commutative diagrams

Spec(Ui)
∼−−−→ Ui⏐⏐�

⏐⏐�
Spec(X) −−−→ X , i ∈ J.

(5)

in which vertical arrows are open immersions and the upper horizontal arrow is a homeo-
morphism; hence the lower horizontal arrow is a homeomorphism.

(a3) The diagrams (5) extend to the commutative diagrams of ringed spaces

(Spec(Ui),OUi
)

∼−−−→ (Ui,OUi
)⏐⏐�

⏐⏐�
(Spec(X),OX) −−−→ (X ,OX ) i ∈ J.

(6)

in which Spec0
c(Ui),OUi

) and (Spec0
c(X),OX) are Zariski geometric centra of resp. Ui

and X , vertical arrows are open immersions and upper horizontal arrow is an isomorphism.
Therefore the lower horizontal arrow is an isomorphism.

(b) Let x be a point of Ui, which we identify with its image in the underlying space X
of the scheme X. Let Qx denote the corresponding element of Spec(X). It follows that
Qx � Ti, or, equivalently, Ti ⊆ Q̂x. Thus, Ti ⊆

⋂
x∈Ui

Q̂x. We claim that Ti =
⋂

x∈Ui

Q̂x. In

fact, if M is an object of CX −Ti, then u∗
i (M) �= 0. Since the category CUi

is equivalent to
the category of modules over a ring, every nonzero object of CUi

has a non-empty support.
In particular, there is a point x ∈ Ui which belongs to the support of u∗

i (M). The latter
means that u∗

i (M) �∈ Ob(Q̂x/Ti), or, what is the same, M �∈ ObQ̂x.
Since each Q̂x is a Serre subcategory and the intersection of any family of Serre

subcategories is a Serre subcategory, Ti is a Serre subcategory.

9.8.3. Remarks. (i) A comment to the assertion 9.8.2(b): if CY is a Grothendieck
category and T is a Serre subcategory than the localization functor CY −→ CY /T has a
right adjoint.

(ii) The quasi-compactness of the scheme in 9.8.2 is an essential requirement. If
the scheme is not quasi-compact, the spectrum Spec(X) might be not sufficiently big
to reconstruct the underlying space. This was observed by O. Gabber who produced an
example of a scheme which is not isomorphic to the ringed space (Spec(X),OX) associated
with its category of quasi-coherent sheaves. He also mentioned that his example does not
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work for slightly different version of a spectrum. This version of a spectrum is nothing
else, but the spectrum related to coreflective topologizing subcategories studied in the next
section.

10. The spectra related to coreflective topologizing subcategories.

10.1. The spectra Spec0
c(X) and Spec1

c(X). These are spectra obtained via an
application of the construction of the relative spectra (see 2.5) to the inclusion functor
Thc(X) ↪→ Tc(X) from the preorder Thc(X) of coreflective thick subcategories to the pre-
order Tc(X) of coreflective topologizing subcategories of the category CX . Objects of the
spectrum Spec1

c(X) are coreflective thick subcategories P such that the intersection Pc of
all coreflective topologizing subcategories properly containing P contains P properly too.
The spectrum Spec0

c(X) is formed by coreflective topologizing subcategories Q of CX such
that the union 〈Q〉 of all coreflective subcategories of CX which do not contain Q is a core-
flective thick subcategory. The canonical injective morphism Spec0

c(X) −→ Spec1
c(X)

maps Q to 〈Q〉. It follows from the definition of 〈Q〉 that every coreflective topologizing
subcategory properly containing 〈Q〉 contains Q, hence the smallest coreflective subcat-
egory [〈Q〉,Q]c containing Q and 〈Q〉 coincides with 〈Q〉c. The injectivity of the map
Q �−→ 〈Q〉 is a consequence of the following fact which is going to be used more than once.

10.1.1. Lemma. If Q1, Q2 are elements of Tc(X), then Q1 ⊆ Q2 iff Q̂1 ⊆ Q̂2.

Proof. The argument is the same as in 4.1.

10.1.2. Proposition. Let CX be an abelian category with the property (sup).
(a) The canonical morphism

Spec0
c(X) −→ Spec1

c(X), Q �−→ 〈Q〉, (1)

is an isomorphism.
(b) There are natural injective morphisms

Spec(X) −→ Spec0
c(X) and Spec1,1

t (X) −→ Spec1
c(X) (2)

such that the diagram
Spec(X) −−−→ Spec0

c(X)
�
⏐⏐�

⏐⏐��
Spec1,1

t (X) −−−→ Spec1
c(X)

commutes.
(c) If CX has enough objects of finite type, then the morphisms (2) are isomorphisms.

Proof. (a) For every P ∈ Spec1
c(X), the intersection Pc ∩ P⊥ is nonzero, because

P is a Serre subcategory. The claim is that the coreflective topologizing subcategory
[P∗]c spanned by the subcategory P∗ = Pc ∩ P⊥ belongs to the spectrum Spec0

c(X) and
〈[P∗]c〉 = P. The map

Spec1
c(X) −→ Spec0

c(X), P �−→ 〈[P∗]c〉, (3)
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is inverse to the map (1) above.
(a1) Notice that 〈[P∗]c〉 = 〈P∗〉 because a coreflective topologizing subcategory does

not contain [P∗]c iff it does not contain P∗. Therefore, our claim is that 〈P∗〉 = P.
(a2) If T is a coreflective topologizing subcategory of CX which is not contained in

P, then P∗ = Pc ∩ P⊥ ⊆ T .
In fact, if T � P, then the coreflective topologizing subcategory T • P contains P

properly, hence it contains Pc. Notice that every P-torsion free object of T •P belongs to
T . In particular, P∗ ⊆ T .

(a3) It follows from (a1) that if T ∈ Tc(X) is such that P∗ � T , then T ⊆ P. This
means that 〈P∗〉 ⊆ P. On the other hand, P∗ � P and P is a Serre subcategory; in
particular, it is coreflective and topologizing; hence the inverse inclusion, P ⊆ 〈P∗〉.

(a4) Since the map (1) is injective and has a right inverse, P �−→ [P∗]c, it is bijective.
(b) Thanks to the property (sup), a thick subcategory of the category CX is core-

flective iff it is a Serre subcategory. In particular, since elements of Spec1,1
t (X) are Serre

subcategories, Spec1,1
t (X) ⊆ Thc(X). A Serre subcategory P belongs to Spec1,1

t (X) iff the
intersection Pt of topologizing subcategories properly containing P contains P properly.
Therefore, Pc contains P properly. The map Spec1,1

t (X) −→ Spec1
c(X) is the inclusion.

Let Q ∈ Spec(X), and let [Q]c be the smallest coreflective topologizing subcategory
of CX containing Q. Clearly [Q]c � Q̂, hence Q̂ ⊆ 〈[Q]c〉. On the other hand, if T
is a coreflective topologizing subcategory of CX such that [Q]c � T , then Q � T , or,
equivalently, T ⊆ Q̂. This shows the inverse inclusion, 〈[Q]c〉 ⊆ Q̂. The equality 〈[Q]c〉 =
Q̂, together with the fact that Q̂ is a Serre subcategory, shows that [Q]c ∈ Spec0

c(X) for
every Q ∈ Spec(X). The map Spec(X) −→ Spec0

c(X) assigns to every element Q of
Spec(X) the coreflective topologizing subcategory [Q]c spanned by Q.

(c) Let Q be an object of Spec0
c(X). One can see that 〈Q〉 = 〈M〉 for every object

M of Q− 〈Q〉: the inclusion 〈M〉 ⊆ 〈Q〉 is due to the fact that M ∈ ObQ and the inverse
inclusion holds because M �∈ Ob〈Q〉. This implies that Q = [M ]c for any object M of
Q− 〈Q〉. In particular, Q = [M ]c for any nonzero object M of Q ∩ 〈Q〉⊥.

Suppose that the category CX has enough objects of finite type, i.e. every nonzero
object of CX has a nonzero subobject of finite type. In particular, any nonzero object of
the subcategory Q ∩ 〈Q〉⊥ has a nonzero subobject L. Since L belongs to Q ∩ 〈Q〉⊥ and
is nonzero, [L]c = Q. We claim that L is an object of Spec(X), which implies that the
topologizing subcategory [L] generated by L belongs to Spec(X).

In fact, let N be a nonzero subobject of L. Then [N ]c = Q = [L]c. In particular, L is
an object of the coreflective topologizing subcategory of CX spanned by N . Objects of the
subcategory [N ]c are precisely objects of the category CX which are supremums of their
subobjects from [N ]. In particular, L is a supremum of its subobjects from [N ]. Since
subobjects of L which belong to the topologizing subcategory [N ] form a filtered system
and L is of finite type, it follows that L is isomorphic to one of its subobjects from [N ],
i.e. L ∈ Ob[N ]. This proves that L belongs to Spec(X).

10.2. The spectra Speci
c(X) and Speci

Se(X). Recall that Speci
Se(X), i = 0, 1,

are the spectra of the preorder Se(X) of Serre subcategories of CX (see 8.7): points of
Spec1

Se(X) are Serre subcategories P of CX such that the intersection Ps of all Serre
subcategories of CX properly containing P does not coincide with P; and Spec0

Se(X)
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is formed by Serre subcategories Q such that the union 〈Q〉s of Serre subcategories not
containing Q is a Serre subcategory.

10.2.1. Proposition. There are natural injective morphisms

Speci
c(X) −→ Speci

Se(X) i = 0, 1,

such that the diagram
Spec0

c(X) −−−→ Spec0
Se(X)

�
⏐⏐�

⏐⏐�
Spec1

c(X) −−−→ Spec1
Se(X)

(1)

commutes.

Proof. The spectrum Spec1
c(X) is contained in the spectrum Spec1

Se(X), because
if Pc �= P, then (Pc)− is the smallest Serre subcategory properly containing P, hence
P belongs to Spec1

Se(X). The map Spec0
c(X) −→ Spec0

Se(X) assigns to every Q ∈
Spec0

c(X) the Serre subcategory Q− spanned by Q (cf. 1.5).

10.2.2. Extended spectra. Extended spectra are obtained via adjoining to the
original spectra a marked point. In the case of Spec0

c(X) and Spec0
Se(X), this marked

point might be realized the zero subcategory. In the case of the spectra Spec1
c(X) and

Spec1
Se(X), the marked point is realized as the empty subcategory which reflects the

equalities 〈0〉 = ∅ = 〈0〉s.
Morphisms between the original spectra determine morphisms between the corre-

sponding extended spectra mapping marked points to marked points. In particular, the
commutative diagram (1) extends to the commutative diagram

Spec0
c(X)� −−−→ Spec0

Se(X)�

�
⏐⏐�

⏐⏐�
Spec1

c(X)� −−−→ Spec1
Se(X)�

(1�)

10.2.2.1 Proposition. There are natural maps

Speci
Se(X)� −−−→ Speci

c(X)�, i = 0, 1,

such that the diagram

Spec0
c(X)� −−−→ Spec0

Se(X)� −−−→ Spec0
c(X)�

�
⏐⏐�

⏐⏐�
⏐⏐��

Spec1
c(X)� −−−→ Spec1

Se(X)� −−−→ Spec1
c(X)�

(2)

commutes and the compositions of its horizontal arrows are identical morphisms.

Proof. The map Spec1
Se(X)� −−−→ Spec1

c(X)� assings to each P ∈ Spec1
Se(X)

the Serre subcategory 〈Pc ∩ P⊥〉 if Pc �= P (i.e. if P ∈ Spec1
c(X)) and the marked point,
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〈0〉 = ∅, if Pc = P. The map Spec1
Se(X)� −−−→ Spec1

c(X)� is uniquely defined by the
commutativity of the right square in the diagram (2). It follows from the (argument of)
10.1.2 that the composition of the lower horizontal arrows in (2) is the identical map. The
similar fact for the upper horizontal arrows is a consequence of this and the commutativity
of the diagram (2).

10.3. Functorial properties of Spec1
c(X) and Spec0

c(X). For any topologizing
subcategory T of the category CX , we set

U1
c (T) = {P ∈ Spec1

c(X) | T ⊆ P}
V 1

c (T) = Spec1
c(X) − U1

c (T) = {P ∈ Spec1
c(X) | T � P}.

U0
c (T) = {Q ∈ Spec0

c(X) | Q � [T]c} and

V 0
c (T) = Spec0

c(X) − U0
c (T) = {Q ∈ Spec0

c(X) | Q ⊆ [T]c}

(1)

10.3.1. Proposition. Let T be a topologizing subcategory of the category CX .
(a) The isomorphism

Spec0
c(X) ∼−→ Spec1

c(X), Q �−→ 〈Q〉,

(cf. 10.1.2) induces isomorphisms

U0
c (T) ∼−→ U1

c (T) and V 0
c (T) ∼−→ V 1

c (T). (2)

(b) There are equalities V i
c (T) = V i

c (T−) and U i
c(T) = U i

c(T
−), i = 0, 1.

(c) For every P ∈ V 1
c (T), the intersection P ∩ T is an element of Spec1(|T|), where

C|T| = T, and the map

V 1
c (T) −→ Spec1

c(|T|), P �−→ P ∩ T, (3)

is an isomorphism. The inverse map is given by P̃ �−→ P̃+ (see 7.1).
Similarly, the map Q �−→ Q∩ T induces an isomorphism V 0

c (T) −→ Spec0
c(|T|).

(cbis) If T is coreflective, then the inverse isomorphism, Spec0
c(|T|) −→ V 0

c (T), is
given by the identical map.

(d) The maps P �−→ P/T− and Q �−→ (T−•Q•T−)/T− define injective morphisms
resp.

U1
c (T) −→ Spec1

c(X/T−) and U0
c (T) −→ Spec0

c(X/T−) (4)

such that the diagram
U0

c (T) −−−→ Spec0
c(X/T−)

�
⏐⏐�

⏐⏐��
U1

c (T) −−−→ Spec1
c(X/T−)

(5)

commutes.

Proof. (a) Let Q ∈ U0
c (T), i.e. Q ∈ Spec0

c(X) and Q � [T ]c. This means precisely
that 〈Q〉 ∈ Spec0

c(X) and T ⊆ 〈Q〉, i.e. Q is an element of U0
c (T) iff 〈Q〉 is an element
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of U1
c (T). The isomorphism V 0

c (T) ∼−→ V 1
c (T) follows from this and the isomorphism

Spec0
c(X) ∼−→ Spec1

c(X).
(b) The equalities V 1

c (T) = V 1
c (T−) and U1

c (T) = U1
c (T−) follow from an observation

that elements of Spec1
c(X) are Serre subcategories, and if P is a Serre subcategory, then

T ⊆ P iff T− ⊆ P. The other two equalities follow from these isomorphisms (2) above.
(c) Let P ∈ V 1

c (T), i.e. P ∈ Spec1
c(X) and T � P. The latter implies that [T]c • P is

a coreflective topologizing subctegory of CX properly containing P. Therefore, it contains
Pc, and we have:

Pc ∩ P⊥ ⊆ ([T]c • P) ∩ P⊥ = [T]c ∩ P⊥ ⊆ [T]c.

In particular, the intersection Q̃T = T ∩ Pc ∩ P⊥ is nonzero. This implies that 〈Q̃T〉 = P
(see the argument 10.1.2(c)). Notice that if S is a coreflective topologizing subcategory of
T, then S coincides with the intersection of T with the smallest coreflective topologizing
subcategory of CX containing S. Therefore, the union 〈Q̃T〉T of coreflective topologizing
subctegories of T which do not contain Q̃T coincides with the intersection 〈Q̃T〉∩T. Thus,
〈Q̃T〉T = P ∩ T; in particular, P ∩ T ∈ Spec1

c(|T|) and the corresponding element of
Spec0

c(|T|) is [Pc ∩ P⊥]c ∩ T. In other words, it is obtained from P by applying the
composition of the isomorphism Spec1

c(X) ∼−→ Spec0
c(X) and the intersection with T, i.e.

the diagram
V 0

c (T) −−−→ Spec0
c(|T|)

�
⏐⏐�

⏐⏐��
V 1

c (T) −−−→ Spec1
c(|T|)

(6)

whose horizontal arrows are given by P �−→ P∩T, commutes. It follows from the argument
above that the map V 0

c (T) −→ Spec0
c(|T|), Q �−→ Q ∩ T, is an isomorphism with the

inverse map which assigns to every element Q′ of Spec0
c(|T|) the coreflective topologizing

subcategory [Q′]c in CX spanned by Q′. Therefore the lower horizontal arrow in (6) is an
isomorphism too.

(cbis) If T is coreflective, then every coreflective topologizing subcategory of T is a
coreflective topologizing subcategory of CX , hence the isomorphism

Spec0
c(|T|)

∼−→ V 0
c (T), Q′ �−→ [Q′]c,

discussed above becomes an identical map.
(d) Let q∗ denote the localization functor CX −→ CX/T−.
If P belongs to U1

c (T), i.e. T ⊆ P � Pc, then

(P/T−)c = [q∗(Pc)]c = (T− • Pc • T−)/T− � P/T−.

This shows that P/T− is an element of Spec1
c(X/T−).

If Q is the image of the element P in U0
c (T) (see the assertion (a) above), then

the coreflective subcategory [q∗(Q)]c = (T− • Q • T−)/T− is the image of P/T− in
Spec0

c(X/T−). The commutativity of the diagram (5) follows from the definition of its
arrows.
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10.4. The local property of the spectrum Spec1
c(X).

10.4.1. Proposition. Let {Ti | i ∈ J} be a set of Serre subcategories of the category
CX such that

⋂
i∈J

Ti = 0; and let u∗
i denote the localization functor CX −→ CX/Ti.

1) The following conditions on P ∈ Spec1
Se(X) are equivalent:

(a) P ∈ Spec1
c(X),

(b)
⋂

i∈JP

u∗−1

i ((P/Ti)c) � P , where JP = {j ∈ J | Tj ⊆ P}, and if JP = J−JP �= ∅,

then
⋂

j∈JP
Tj � P .

2) The conditions (a) and (b) imply the condition
(c) P/Ti ∈ Spec1

c(X/Ti) for each i ∈ JP .
If J is finite, then the conditions (a) and (b) are equivalent to the condition (c).

Proof. 1) Since P is a Serre subcategory, the condition
⋂
i∈J

T −
i = 0 implies that

JP = {i ∈ J | Ti ⊆ P} is not empty.
In fact, if Ti � P for all i ∈ J , then Ti • P ⊇ Pc, hence Pc ⊆

⋂
i∈J

(Ti • P). But, by

A1.2.1,
⋂
i∈J

(Ti • P) =
( ⋂

i∈J

Ti

)
• P = 0 • P = P , hence Pc = P, which contradicts to the

assumption that P ∈ Spec1
c(X), i.e. P � Pc.

2) Notice that if S is a Serre subcategory, and T a subcategory of CX closed under
taking subquotients, then T � S iff T ∩ S⊥ �= 0, because an object M of CX does not
belong to S iff it has a nonzero S-torsion free subquotient.

In particular, the condition (b) above can be written as follows:
(b)

⋂
i∈JP

u∗−1

i ((P/Ti)c)
⋂

P⊥ �= 0, and
( ⋂

j∈JP
Tj

)⋂
P⊥ �= 0, if JP = J − JP �= ∅.

(a) ⇒ (b). Let P ∈ Spec1
c(X), i.e. P �= Pc.

If i ∈ JP , that is Ti ⊆ P, then u∗−1

i ((P/Ti)c) = Ti • Pc • Ti.
Since Ti ⊆ P, the intersection (Ti • Pc • Ti)

⋂
P⊥ coincides with (Ti • Pc)

⋂
P⊥.

Therefore ⋂
i∈JP

u∗−1

i ((P/Ti)c)
⋂

P⊥ =
⋂

i∈JP

((Ti • Pc)
⋂

P⊥) =

( ⋂
i∈JP

(Ti • Pc)
)⋂

P⊥ =
(( ⋂

i∈JP

Ti

)
• Pc

)⋂
P⊥ ⊇ Pc

⋂
P⊥ �= 0.

(1)

Here we used the equality
⋂

i∈JP

(Ti • Pc) =
( ⋂

i∈JP

Ti

)
• Pc which is due, by A1.2.1, to the

fact that the subcategory Pc is coreflective.
Notice that if JP = J , that is Ti ⊆ P for all j ∈ J , then

⋂
i∈JP

Ti = 0, hence the last in-

clusion in (1) can be replaced by the equality, i.e. the intersection
⋂

i∈JP

u∗−1

i ((P/Ti)c)
⋂

P⊥
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coincides with Pc ∩ P⊥.
Suppose that JP = J − JP is non-empty. If j ∈ JP , that is Tj is not contained in P,

then Tj • P is a coreflective topologizing subcategory properly containing both Tj and P,
hence properly containing P. Therefore Pc ⊆ Tj • P for all j ∈ JP , or Pc ⊆

⋂
j∈JP

(Tj • P).

Since P is a coreflective subcategory,
⋂

j∈JP
(Tj • P) =

( ⋂
j∈JP

Tj

)
• P (see A1.2.1). Thus,

Pc ⊆
( ⋂

j∈JP
Tj

)
• P, which implies (actually, is equivalent to) that

⋂
j∈JP

Tj � P .

(b) ⇒ (a). There are two cases: JP = J and JP �= J .
(i) We start with the first case; i.e. we assume that Ti ⊆ P for all i ∈ J . Set Q̃ =⋂

i∈J

u∗−1

i ((P/Ti)c)
⋂

P⊥ and Q = [Q̃]c – the smallest coreflective topologizing subcategory

of CX containing Q̃. We claim that Q belongs to Spec0
c(X) and 〈Q〉 = P. Since, by

condition (b), Q � P, it suffices to show that 〈Q〉 = P.
Let S be a coreflective topologizing subcategory of CX which is not contained in P.

Then P is properly contained in S • P and, therefore, u∗−1

i ((P/Ti)c) ⊆ Ti • S • P for each
i ∈ J . This implies that u∗−1

i ((P/Ti)c)
⋂
P⊥ ⊆ Ti • S • P

⋂
P⊥ ⊆ Ti • S. Therefore,

Q̃ =
⋂
i∈J

u∗−1

i ((P/Ti)c)
⋂

P⊥ ⊆
⋂
i∈J

(Ti • S) =
( ⋂

i∈J

Ti

)
• S = 0 • S = S,

so that Q = [Q̃]c ⊆ S.

(ii) Consider now the second case: JP �= J , i.e. JP = J − JP is non-empty. This case
can be reduced to the first case as follows.

Set CVP =
⋂

j∈JP
Tj . Since

⋂
j∈JP

Tj � P, the intersection P0 = CVP
⋂
P is an element

of Spec1
Se(VP). Notice that {Ti ∩ CVP = T̃i | i ∈ JP} is a cocover of VP , i.e.

⋂
j∈JP

T̃j = 0.

It remains to show that the condition Q̃ =
⋂
i∈J

u∗−1

i ((P/Ti)c)
⋂

P⊥ �= 0 implies the anal-

ogous condition for the object P0 = CVP
⋂

P of Spec1
Se(VP) and the cover {T̃i | i ∈ JP};

that is
Q̃0 =

⋂
i∈J

ũ∗−1

i ((P0/T̃i)c)
⋂

P⊥
0 �= 0.

In fact, let ũ∗
i denote the localization functor CVP −→ CVP /T̃i. Then

ũ∗−1

i ((P0/T̃i)c) = u∗−1

i ((P/Ti)c)
⋂

CVP , and

ũ∗−1

i ((P0/T̃i)c)
⋂

P⊥
0 = u∗−1

i ((P/Ti)c)
⋂

CVP

⋂
P⊥.

Therefore,⋂
i∈J

ũ∗−1

i ((P0/T̃i)c)
⋂

P⊥
0 =

⋂
i∈J

u∗−1

i ((P/Ti)c)
⋂

P⊥
⋂

CVP = Q̃
⋂

CVP . (2)
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On the other hand, for every i ∈ JP , there is an inclusion Ti•CVP •P ⊇ u∗−1

i ((P/Ti)c),
because CVP � P, which implies the inclusion u∗−1

i ((P/Ti)c)
⋂
P⊥ ⊆ Ti •CVP . Taking the

intersection, we obtain the inclusion

Q̃ ⊆
⋂

i∈JP

(Ti • CVP ) =
( ⋂

i∈JP

Ti

)
• CVP . (3)

Notice that Q̃ is a full subcategory of CX closed under taking subobjects. In particular,
the equality Q̃

⋂
CVP = 0 means precisely that every object of Q̃ is CVP -torsion free.

The latter fact together with the inclusion Q̃ ⊆
( ⋂

i∈JP

Ti

)
• CVP (see (3)) implies that

Q̃ ⊆
⋂

i∈JP

Ti ⊆ P, which contradicts to the fact that Q̃ is a nonzero subcategory of P⊥.

This contradiction shows that Q̃
⋂

CVP �= 0, hence, by (2),

Q̃0 =
⋂
i∈J

ũ∗−1

i ((P0/T̃i)c)
⋂

P⊥
0 �= 0.

(iii) Thus, the ’space’ VP , the cocover {T̃i | i ∈ JP}, and the point P0 = P
⋂

CVP of
the spectrum Spec1

Se(VP) satisfy the conditions (b) with all T̃i being subcategories of P0.
By (i) above, P0 belongs to the spectrum Spec1

c(VP), and P0 = 〈Q̃0〉VP = 〈Q0〉VP , where
Q0 is the smallest coreflective topologizing subcategory of CVP containing Q̃0. Therefore,
[Q0]c is a point of the spectrum Spec0

c(X) and 〈Q0〉X = P.

(b) ⇒ (c). The condition
⋂

i∈JP

u∗−1

i ((P/Ti)c)
⋂

P⊥ �= 0 implies that the intersection

u∗−1

i ((P/Ti)c)
⋂
P⊥ is nonzero for every i ∈ JP . In particular, (P/Ti)c does not coincide

with P/Ti, which means that P/T belongs to the spectrum Spec1
c(X/Ti).

(c) ⇒ (b) (when J is finite). For every i ∈ JP , let Q̃i denote the intersection
u∗−1

i ((P/Ti)c)
⋂
P⊥ and Qi = [Q̃i]c – the smallest coreflective topologizing subcategory

of CX containing Q̃i. By assumption, Q̃i �= 0 for each i ∈ JP , hence Qi � P. The
latter implies that, for every j ∈ JP , the coreflective topologizing subcategory spanned by
u∗

j (Qi • P) contains (P/Tj)c, or, equivalently, u∗−1

j ((P/Ti)c) ⊆ Tj • Qi • P. Therefore,

Q̃j = u∗−1

j ((P/Tj)c)
⋂

P⊥ ⊆ (Tj • Qi • P)
⋂

P⊥ = (Tj • Qi)
⋂

P⊥ ⊆ Tj • Qi

which implies the inclusion Qj ⊆ Tj • Qi for every (i, j) ∈ JP × JP , hence the inclusion

Qj ⊆
⋂

i∈JP

(Tj • Qi) = Tj •
( ⋂

i∈JP

Qi

)
.

Here the equality is due to the finiteness of JP .
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It follows from the inclusion Qj ⊆ Tj •
( ⋂

i∈JP

Qi

)
that

⋂
i∈JP

Qi �= 0, because other-

wise Qj ⊆ Tj • 0 = Ti, which is impossible, since Tj ⊆ P and Qj � P.
If J = JP , the condition (b) is fulfilled. If J �= JP , we need to check that

⋂
i∈JP

Ti � P.

In fact, if i ∈ JP = J − JP , then Ti � P. Therefore, for every j ∈ JP , the coreflective
subcategory spanned by u∗

j (Ti • P) contains (P/Tj)c, or, equivalently, u∗−1

j ((P/Tj)c) ⊆
Tj • Ti • P, which implies that Q̃j = u∗−1

j ((P/Tj)c)
⋂
P⊥ ⊆ (Tj • Ti)

⋂
P⊥. Taking the

intersection and using the finiteness of JP , we obtain:

Q̃j ⊆
( ⋂

i∈JP
(Tj • Ti)

)⋂
P⊥ =

(
Tj •

( ⋂
i∈JP

Ti

))⋂
P⊥. (4)

The inclusion
⋂

i∈JP
Ti ⊆ P implies (together with (4)) that Q̃j ⊆ Tj ⊆ P, which is

impossible. So that
⋂

i∈JP
Ti � P.

10.4.2. Note. The reader had, probably, noticed that some parts of the proof of
10.4.1 are similar to some parts of the argument of 9.6.1. If one considers only the case
of finite cocovers, one can follow the argument of 9.6.1 which is considerably shorter than
the proof above.

10.4.3. Proposition. Let {Ti | i ∈ J} be a set of Serre subcategories of the category
CX such that

⋂
i∈J

Ti = 0; and let u∗
i denote the localization functor CX −→ CX/Ti.

1) The following conditions on a nonzero coreflective topologizing subcategory Q of
CX are equivalent:

(a) Q ∈ Spec0
c(X),

(b) [u∗
i (Q)]c ∈ Spec0

c(X/Ti) for every i ∈ J such that Q � Ti.

Proof. The implication (a) ⇒ (b) follows from 10.3.1(d).
(b) ⇒ (a). Let J〈Q〉 denote the set of all i ∈ J such that Q � Ti, or, equivalently,

Ti ⊆ 〈Q〉. Notice that J〈Q〉 is non-empty, because Q is nonzero and
⋂
i∈J

Ti = 0.

Fix an i ∈ J〈Q〉 and set Pi = u∗−1

i (〈u∗
i (Q)〉). It follows from the formula for Pi that

Q � Pi. Notice that Pi = Pj for every j ∈ J〈Q〉.
In fact, replacing CX by CX′ = CX/(Pi ∩Pj) and Pk by P ′

k = Pk/(Pi ∩Pj), k = i, j,
we can obtain that P ′

i ∩P ′
j = 0. It follows from 10.3.1 that the condition (b) survives this

operation. By 9.6.1, the image Q′ of Q in CX′ belongs to Spec0
c(X

′). Therefore, P ′
i = P ′

j ,
which implies that Pi = Pj .

So, we write P instead of Pi. For every i ∈ J〈Q〉, the subcategory (P/Ti)c contains
u∗

i (Q), hence its preimage, u∗−1

i ((P/Ti)c), contains Q. Since
⋂

i∈J〈Q〉

u∗−1

i ((P/Ti)c) contains
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Q, it is not contained in P. Similarly, if J 〈Q〉 = J−J〈Q〉 is non-empty, then Q ⊆
⋂

i∈J〈Q〉
Tj ,

hence Q ⊆
⋂

i∈J〈Q〉

Tj � P . Thus, P satisfies the condition (b) of 10.4.1. Therefore, by

10.4.1, P ∈ Spec1
c(X). It remains to show that Q is an element of Spec0

c(X) corre-
sponding to P.

It follows from the argument of 10.4.1 that the element of Spec0
c(X) corresponding

to P is the coreflective topologizing subcategory [QP ]c generated by QP = Q ∩ P⊥. In
particular, [QP ]c ⊆ Q. Let M be an object of the subcategory Q. Since [QP ]c is a
coreflective subcategory of CX , the object M has the biggest subobject MP ↪→ M with
MP ∈ Ob[QP ]c. Consider the corresponding exact sequence

0 −→ MP
j−→ M −→ N −→ 0. (5)

For every i ∈ J〈Q〉, the morphism u∗
i (j) is an isomorphism, because the images of [QP ]c

and Q in CX/Ti coincide. This means that the object N in (5) belongs to Ti = Ker(u∗
i )

for each i ∈ J〈Q〉. On the other hand, Q ⊆ Tν for every ν ∈ J − J〈Q〉 (by definition of
J〈Q〉); in particular, N ∈ Tν for all ν ∈ J − J〈Q〉. Thus, N is an object of

⋂
i∈J

Ti = 0, i.e.

N = 0, or, equivalently, the arrow MP
j−→ M in (5) is an isomorphism. This proves the

inverse inclusion, [QP ]c ⊇ Q.

For every object M of CX , we define the support of M in Spec0
c(X) by Supp0

c(M) =
{Q ∈ Spec0

c(X) | Q ⊆ [M ]c}.

10.5. Some consequences.

10.5.1. Proposition. Let {Ti | i ∈ J} be a finite set of Serre subcategories of an
abelian category CX such that

⋂
i∈J

Ti = 0 and Spec1
c(X/Ti) = Spec1,1

t (X/Ti) for every

i ∈ J . Then Spec1
c(X) = Spec1,1

t (X). In particular, the canonical map

Spec(X) −−−→ Spec0
c(X), Q �−→ [Q]c,

is an isomorphism.

Proof. The inclusion Spec1,1
t (X) ⊆ Spec1

c(X) holds by 10.1.2(b). Let P ∈
Spec1

c(X). Then, by the implication (a) ⇒ (c) in 10.4.1, P/Ti ∈ Spec1
c(X/Ti) for

every i ∈ J such that Ti ⊆ P. By hypothesis, Spec1
c(X/Ti) = Spec1,1

t (X/Ti) for all
i ∈ J . Therefore, by the implication (b) ⇒ (a) in 9.6.1, P belongs to Spec1,1

t (X).

10.5.2. Corollary. Let {Ti | i ∈ J} be a finite set of Serre subcategories of an abelian
category CX such that

⋂
i∈J

Ti = 0 and for every i ∈ J , the quotient category CX/Ti has

enough objects of finite type. Then Spec1
c(X) = Spec1,1

t (X).
In particular, the canonical map Spec(X) −→ Spec0

c(X) is an isomorphism.
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Proof. Since each quotient category CX/Ti has enough objects of finite type, it follows
from 10.1.2(c) that Spec1

c(X/Ti) = Spec1,1
t (X/Ti) for all i ∈ J . The assertion follows

now from 10.5.1.

10.5.3. Affine and quasi-affine cocovers. A morphism X
f−→ Y is called affine

if it has a conservative (i.e. reflecting isomorphisms) direct image functor, CX
f∗−→ CY (–

a right adjoint to f∗) which has, in turn, a right adjoint. We call a ’space’ X affine over a
ring R, if there is an affine morphism X −→ Sp(R), where CSp(R) = R−mod. A ’space’
X is called affine if it is affine over Z. By [R4, 9.3.3], X is affine iff the category CX has
a projective generator of finite type. By a well-known theorem of Gabriel and Mitchell,
the latter condition means precisely that the category CX is equivalent to the category of
modules over an associative ring.

We call set {Ti | i ∈ J} of thick subcategories of the category CX an affine cocover of
the ’space’ X if

⋂
i∈J

Ti = 0 and X/Ti is affine for every i ∈ J .

10.5.4. Proposition. Let a finite set {Ti | i ∈ J} of Serre subcategories of CX be a
cocover of X (that is

⋂
i∈J

Ti = 0) such that every quotient category CX/Ti has a family of

generators of finite type. Then Spec1
c(X) = Spec1,1

t (X).
In particular, Spec1

c(X) = Spec1,1
t (X), if {Ti | i ∈ J} is an affine cocover of X.

Proof. In fact, quotients of an object of finite type is an object of finite type. Therefore,
if a category CY has a family of generators of finite type, then every nonzero object of CY

has a subobject of finite type. The assertion follows now from 10.5.3.

10.5.5. Remark. If CX is a Grothendieck category and S is a Serre subcategory
of CX , then the localization functor CX −→ CX/S has a right adjoint, hence CX/S
is Grothendieck category (see [BD, Ch.6]). In particular, all CX/Ti are Grothendieck
categories. One can regard Grothendieck categories with a generator of finite type as a
noncommutative version of a quasi-affine scheme.

Recall that quasi-affine commutative schemes are, by definition, quasi-compact open
subschemes of affine commutative schemes.

10.6. Geometric centers of a ’space’ X associated with Spec0
c(X).

10.6.1. The geometric center associated with a topology on Spec0
c(X). Let

τ be a topology on Spec0
c(X). For every open subset U , let ÕX(U) denote the center of

the quotient category CX/〈U〉, where 〈U〉 =
⋂
Q∈U

〈Q〉. Recall that the center of the category

CY is the (commutative) ring of the endomorphisms of the identical functor CY −→ CY .
The correspondence U �−→ ÕX(U) is a presheaf of commutative rings on the topo-

logical space (Spec0
c(X), τ). We denote by OX the associated sheaf. The ringed space

((Spec0
c(X), τ),OX) is called the geometric center of X associated with (Spec0

c(X), τ).

10.6.2. Zariski geometric center. A topologizing subcategory T of CX is called
a Zariski topologizing subcategory if it is bireflective, i.e. the inclusion functor T ↪→ CX

has right and left adjoints. Subsets U0
c (T) = {Q ∈ Spec0

c(X) | Q � T}, where T runs
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through the preorder Tz(X) of Zariski topologizing subcategories, are open sets of the
Zariski topology on Spec0

c(X) (cf. A1.2.4.1). We call the corresponding geometric center
the Zariski geometric center of X .

10.6.3. The topologies τc and τ c on Spec0
c(X). The Zariski topology might be

trivial or too coarse in the noncommutative case. For instance, it is trivial if CX = R−mod,
where the ring R is simple (i.e. does not have nonzero proper two-sided ideals), like, for
instance, any Weyl algebra. Following A1.7, we introduce other topologies on Spec0

c(X)
by fixing a set Ξ of coreflective topologizing subcategories of CX and then taking subsets
U0

c (T) = {Q ∈ Spec0
c(X) | Q � T}, T ∈ Ξ, as a base of open sets of a topology τΞ.

Taking Ξ = Spec0
c(X), we obtain the topology τc (compare with A1.7.2). Thus the

sets V 0
c (Q) = {Q′ ∈ Spec0

c(X) | Q′ ⊆ Q}, Q ∈ Spec0
c(X), form a base of closed subsets

of this topology.
The topology τ c is determined by Ξ consisting of the subcategories [M ]c spanned

by objects which are locally of finite type. Here ’locally of finite type’ means that the
localization of M at every point Q of Spec0

c(X) (i.e. its image in the quotient category
CX/〈Q〉) is an object of finite type. It seems that τ c is an appropriate version of Zariski
topology for the spectrum Spec0

c(X). If CX has enough objects of locally finite type, then
the topology τ c is finer than the topology τc.

10.7. Reconstruction of commutative schemes.

10.7.1. Proposition. Let CX be the category of quasi-coherent sheaves on a scheme
X = (X ,O). Suppose that there is an affine cover {Ui ↪→ X | i ∈ J} of the scheme X
such that all immersions Ui ↪→ X , i ∈ J, have a direct image functor. Then the geometric
center (Spec0

c(X),OX) is isomorphic to the scheme X.

Proof. The argument follows the lines of the proof of 9.8.2.
(a) The underlying space X of the scheme X is isomorphic to Spec0

c(X).
Let {Ui ↪→ X | i ∈ J} be an affine cover of the scheme X. For each i ∈ J , we

denote by CUi
the category of quasi-coherent sheaves on the affine scheme (Ui,OUi

) and

by Ti the kernel of the inverse image functor CX
u∗

i−→ CUi
. This inverse image functor

uniquely determines the equivalence of the quotient category CX/Ti and CUi
. The fact

that {Ui ↪→ X | i ∈ J} is a cover means precisely that
⋂
i∈J

Ti = 0. The existence of a direct

image functor, CUi

ui∗−→ CX , of the embedding Ui ↪→ X implies that the subcategory Ti is
coreflective: a right adjoint to the inclusion functor Ti −→ CX assigns to every object M
of CX the kernel of the adjunction morphism M −→ ui∗u

∗
i (M).

(a1) Let x be a point of the underlying space X of the scheme X. Let Ix̄ be the
defining ideal of the closure x̄ of the point x and Mx̄ the quotient sheaf O/Ix̄. Set
Jx = {i ∈ J | Mx̄ �∈ ObTi}. We claim that Qx = [Mx̄]c is an element of Spec0

c(X).
For every i ∈ Jx, the object u∗

i (Mx̄) of the category CUi
belongs to Spec(Ui) and

Spec(Ui) = Spec0
c(Ui), because CUi

is (equivalent to) the category of modules over a ring.
Therefore, [u∗

i (Qx)]c = [u∗
i (Mx̄)]c is an element of Spec0

c(Ui). By 10.4.3, Qx ∈ Spec0
c(X).

(a2) Conversely, let Q be an element of Spec0
c(X). Let Q � Ti, or, equivalently,

Ti ⊆ 〈Q〉. By 10.4.3, [u∗
i (Q)]c is an element of Spec0

c(Ui). Since Ui is affine, Spec0
c(Ui)
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is in bijective correspondence with the underlying space Ui of the subscheme (Ui,OUi
); in

particular, to the element [u∗
i (Q)]c there corresponds a point x of Ui which we identify

with its image in X . Notice that the point x does not depend on the choice of i ∈ J〈Q〉 =
{j ∈ J | Tj ⊆ 〈Q〉}. This gives a map Spec0

c(X) −→ X which is inverse to the map
X −→ Spec0

c(X) constructed in (a1) above. These maps are homeomorphisms in the case
if the cover consists of one element, i.e. the scheme is affine. The general case follows from
the commutative diagrams

Spec0
c(Ui)

∼−−−→ Ui⏐⏐�
⏐⏐�

Spec0
c(X) −−−→ X , i ∈ J.

(6)

in which vertical arrows are open immersions and the upper horizontal arrow is a homeo-
morphism; hence the lower horizontal arrow is a homeomorphism.

(b) The diagrams (6) extend to the commutative diagrams of ringed spaces

(Spec0
c(Ui),OUi

)
∼−−−→ (Ui,OUi

)⏐⏐�
⏐⏐�

(Spec0
c(X),OX) −−−→ (X ,O) i ∈ J.

(7)

in which Spec0
c(Ui),OUi

) and (Spec0
c(X),OX) are Zariski geometric centra of resp. Ui

and X , vertical arrows are open immersions and upper horizontal arrow is an isomorphism.
Therefore the lower horizontal arrow is an isomorphism.
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Appendix 1. The noncommutative cosite of topologizing subcategories and
topologies on spectra.

A1.1. The noncommutative finite cosite of topologizing subcategories. We
regard topologizing subcategories of an abelian category CX as ’closed sets’ of a ’finite
topology’ τ f

X defined as follows. We call a set of inclusions {T ↪→ Ti | i ∈ J} of topologizing
subcategories a cocover if there exists a finite subset J0 of J such that

⋂
i∈J0

Ti = T.

Two of the three standard properties of cocovers follow immediately:
(a) T id−→ T is a cocover;
(b) the composition of cocovers is a cocover: if {T ↪→ Ti | i ∈ J} is a cocover and

{Ti ↪→ Tij | j ∈ Ji} is a cocover for every i ∈ J , then {T ↪→ Tij | i ∈ J, j ∈ Ji} is a
cocover.

The third standard property – the invariance under the base change, acquires the
following form:

(c) If {T ↪→ Ti | i ∈ J} is a cocover, then, for any S ∈ T(X), both {T•S ↪→ Ti•S | i ∈ J}
and {S • T ↪→ S • Ti | i ∈ J} are cocovers.

The property (c) follows from [R4, 4.2.1]. Its proof is also contained in the argument
of A1.2.3(b) below.

We call the triple (T(X), •; τ f
X) the noncommutative finite cosite of topologizing sub-

categories of CX .

A1.1.1. Note. One can define a finer topological structure on T(X) by taking as
cocovers all sets of inclusions {T ↪→ Ti | i ∈ J} such that

⋂
i∈J

Ti = T. The family τX of

such cocovers satisfies the conditions (a) and (b) above, but fails, in general, the invariance
with respect to a base change. The situation improves when one considers instead of all
topologizing subcategories coreflective or reflective topologizing categories. This is made
precise below.

A1.2. Coreflective and reflective topologizing categories. Let Tc(X) (resp.
Tc(X)) denote the preorder of all coreflective (resp. reflective) topologizing subcategories of
the category CX . Recall that a subcategory B of CX is called coreflective (resp. reflective) if
the inclusion functor B ↪→ CX has a right (resp. left) adjoint. By [R, III.6.2.1], both Tc(X)
and Tc(X) are monoidal subcategories of the monoidal category (preorder) (T(X), •). We
shall use the same notation – τ f

X , for the restrictions of the topological structure τ f
X defined

in A1.1 to Tc(X) and to Tc(X).
Notice that (Tc(X), •; τ f

X) is naturally anti-isomorphic to (Tc(Xo), •; τ f
Xo).

The term ’anti-isomorphic’ refers to the monoidal structure (S • T)o = To • So, where
So denotes the subcategory of CXo = Cop

X corresponding to the subcategory S of CX .

A1.2.1. Lemma. Suppose that CX is an abelian category with supremums of sets of
subobjects (for instance, if CX has infinite coproducts). Then

(a) The intersection of any set of reflective topologizing subcategories is a reflective
topologizing subcategory.
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(b)
( ⋂

i∈J

Ti

)
• S =

⋂
i∈J

(Ti • S) for any set {Ti | i ∈ J} of topologizing subcategories

and any coreflective subcategory S.

Proof. (a) See [R, III.6.2.2].
(b) The inclusion

( ⋂
i∈J

Ti

)
• S ⊆

⋂
i∈J

(Ti • S) is obvious. On the other hand, let M be

an object of the subcategory
⋂
i∈J

(Ti • S); that is, for every i ∈ J , there exists an exact

sequence 0 −→ Mi −→ M −→ Li −→ 0 such that Mi ∈ ObS and Li ∈ ObTi. Since S
is a coreflective subcategory, the supremum MJ of the set of subobjects {Mi | i ∈ J} is
an object of S. The canonical epimorphism M −→ M/MJ factors through M −→ Li for
each i ∈ J . Therefore, the object M/MJ , being a quotient of the object Li, belongs to the
subcategory Ti for each i ∈ J , hence it belongs to

⋂
i∈J

Ti.

A1.2.2. Corollary. Let CX be an abelian category with infinums of sets of quotient
objects (i.e. the dual category CXo = Cop

X has maximums of sets of subobjects). Then
(a) The intersection of any set of coreflective topologizing subcategories is a coreflective

topologizing subcategory.
(b) S •

( ⋂
i∈J

Ti

)
=

⋂
i∈J

(S • Ti) for any set {Ti | i ∈ J} of topologizing subcategories

and any reflective subcategory S.

Proof. The assertion is dual to the assertion of A1.2.1.

A1.2.3. Corollary. Let CX be an abelian category with supremums of sets of subob-
jects and infinums of sets of quotient objects. Then

(a) The intersection of any set of reflective (resp. coreflective) topologizing subcate-
gories is a reflective (resp. coreflective) topologizing subcategory.

(b) If S is a reflective and U a coreflective topologizing subcategory of CX , then

S •
( ⋂

i∈J

Ti

)
=

⋂
i∈J

(S • Ti) and
( ⋂

i∈J

Ti

)
• U =

⋂
i∈J

(Ti • U)

for any set {Ti | i ∈ J} of topologizing subcategories.

A1.2.3.1. Note. The conditions on CX in A1.2.3 hold if the category CX has infinite
products and coproducts. In particular, they hold for any Grothendieck category, or the
category of quasi-coherent sheaves on an arbitrary scheme.

A1.2.4. Interpretations. Let τX denote the family of cocovers on T(X) in the
sense of A1.1.1; that is {T ↪→ Ti | i ∈ J} is a cocover iff the intersection of all Ti coincides
with T. Corollary A1.2.3 can be spelled as follows:

If the category CX has supremums of sets of subobjects and infinums of sets of quo-
tient objects, then τX induces the structure of a right cosite on the monoid (Tc(X), •)
of coreflective topologizing subcategories and the structure of a left cosite on the monoid
(Tc(X), •) of reflective topologizing subcategories.
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A1.2.4.1. Zariski cosite. We denote by Tz(X) the intersection Tc(X)
⋂

Tc(X).
Objects of Tz(X) – bireflective subcategories of CX , are interpreted as Zariski closed sub-
spaces. By this reason, we shall call them sometimes Zariski topologizing subcategories.
Under conditions of A1.2.3 (i.e. if CX and CXo have supremums of sets of subobjects),
(Tz(X), •; τX) is a two-sided cosite. The latter means that for any set {S, Ti | i ∈ J}
of Zariski topologizing subcategories, the intersection

⋂
i∈J

Ti is a Zariski topologizing

subcategory and

S •
( ⋂

i∈J

Ti

)
=

⋂
i∈J

(S • Ti),
( ⋂

i∈J

Ti

)
• S =

⋂
i∈J

(Ti • S). (1)

We call (Tz(X), •; τX) the noncommutative Zariski finite cosite of the ’space’ X . One
of the reasons for these interpretaions comes from the following example.

A1.2.5. Example. Let CX = R − mod for an associative ring R. For every two-
sided ideal α in R, let Tα denote the full subcategory of R − mod whose objects are
modules annihilated by the ideal α. By [R, III.6.4.1], the map α �−→ Tα is an isomorphism
of the preorder (I(R),⊇) of two-sided ideals of the ring R onto (Tc(X),⊆). Moreover,
Tα •Tβ = Tαβ for any pair of two-sided ideals α, β. This means that the map α �−→ Tα is
an isomorphism of monoidal categories (preorders), where the monoidal structure on I(R)
is the multiplication of ideals.

It follows from this description that every reflective topologizing subcategory of CX =
R − mod is coreflective, that is Tc(X) = Tz(X).

One can see that
⋂
i∈J

Tαi
= Tα

J
, where α

J
= sup(αi|i ∈ J). Thus, the cotopology

τX on Tc(X) = Tz(X) induces a (noncommutative) Zariski topology on I(R): the set of
inclusions of two-sided ideals {αi ↪→ α | i ∈ J} is a cover if α = sup(αi|i ∈ J0).

The invariance with respect to base change in I(R) is expressed by the equalities

β sup(αi| i ∈ J) = sup(βαi| i ∈ J) and sup(αi| i ∈ J)β = sup(αiβ| i ∈ J)

for any set of two-sided ideals {β, αi | i ∈ J}. One can deduce directly from these equalities
the base change invariance on Tz(X) (in the case when CX = R − mod). In fact, we have

⋂
i∈J

(Tαi
• Tβ) =

⋂
i∈J

Tαiβ = Tsup(αiβ| i∈J) = Tsup(αi| i∈J)β =

Tsup(αi| i∈J) • Tβ =
( ⋂

i∈J

Tαi

)
• Tβ .

Similar calculation shows that
⋂
i∈J

(Tβ • Tαi
) = Tβ •

( ⋂
i∈J

Tαi

)
.

A1.2.6. Example: reflective topologizing subcategories of the category
of quasi-coherent sheaves on a scheme. Let CX be the category QcohX of quasi-
coherent sheaves on a scheme X = (X ,OX ). Then elements of Tc(X) are in one to one
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correspondence with quasi-coherent ideals of the structure sheaf OX , or, equivalently, with
closed subschemes of the scheme X.

A1.3. Example: coreflective topologizing subcategories of an affine ’space’.
Let CX be the category R − mod of left modules over an associative ring R. We denote
by I�(R) the set of left ideals of R.

Recall that a set F of left ideals of R is called a topologizing filter if it is closed under
finite intersections, contains with every left ideal m left ideals (m : r) = {a ∈ R | ar ∈ m}
for all r ∈ R and all left ideals containing m.

Topologizing filters of left ideals form a monoidal category (a preorder) with respect
to the Gabriel multiplication defined as follows.

F ◦ G =
⋃

m∈G

F ◦ {m}, where F ◦ {m} = {n ∈ I�(R) | (n : r) ∈ F for all r ∈ m}.

There is a natural bijective correspondence between topologizing filters of left ideals
and coreflective topologizing subcategories of the category R−mod. Namely, to each core-
flective topologizing subcategory T of R −mod, there corresponds the filter FT formed by
annihilators of elements of modules from T. The inverse map assigns to each topologizing
filter F the full subcategory TF whose objects are all R-modules M such that each element
of M is annihilated by some left ideal from F. These maps are mutually inverse isomor-
phisms between the monoidal preorder (TF�(R), ◦) of topologizing filters of left ideals of
the ring R and the monoidal preorder (Tc(X), •) of coreflective topologizing subcategories
of CX = R − mod.

To every left ideal m in R, one can assign the smallest topologizing filter [m] containing
m. It is easy to see that [m] consists of all left ideals n which contain (m : x) = {r ∈ R | rx ⊂
m} for some finite set x of elements of R. The corresponding coreflective topologizing
subcategory is formed by all R-modules M such that every element of M is annihilated by
the left ideal (m : x) for some finite set x of elements of R.

Notice that if m is a two-sided ideal, then m ⊆ (m : x) for any x ⊂ R. In this case the
filter [m] consists of all left ideals of R containing m and the corresponding topologizing
subcategory coincides with the subcategory Tm whose objects are modules annihilated by
m (see A1.2.1). If α and β are two-sided ideals, then [α] ◦ [β] = [αβ]. This shows that the
map I(R) −→ TF�(R), α �−→ [α] is an embedding of monoidal preorders.

Thus, we have a commutative diagram of morphisms of monoidal preorders

(I(R), ·) −−−→ (TF�(R), ◦)
�
⏐⏐�

⏐⏐��
(Tc(X), •) −−−→ (Tc(X), •)

where the lower horizontal arrow is the inclusion functor and CX = R − mod.

A1.4. The cosites of thick and Serre subcategories. Consider the preorder
Th(X) of thick subcategories and the preorder Se(X) of Serre subcategories of the category
CX together with cocovers induced from T(X).

A1.4.1. Proposition. (a) Th(X) and Se(X) are Grothendieck precosites.
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(b) The map T(X) −→ Th(X) which assigns to every topologizing subcategory T the
thick subcategory T∞ generated by T is a morphism from the noncommutative precosite
(T(X), •) of topologizing subcategories to the Grothendick precosite Th(X) of thick subcat-
egories of CX .

(c) The map T(X) −→ Se(X), T �−→ T−, is a morphism from the noncommutative
precosite (T(X), •) to the Grothendick precosite Se(X) of Serre subcategories.

Proof. For any pair of topologizing subcategories S and T, the thick subcategory
(S•T)∞ generated by S•T coincides with the coproduct S∞�T∞ of the thick subcategories
S∞ and T∞ generated respectively by S and T.

Similarly, (S • T)− coincides with the coproduct S− ∨ T− of Serre subcategories gen-
erated respectively by S and T.

In other words, the maps

T(X) −→ Th(X), T �−→ T∞, and T(X) −→ Se(X), T �−→ T−, (1)

are morphisms of monoidal preorders resp.

(T(X), •) −→ (Th(X),�) and (T(X), •) −→ (Se(X),∨).

It remains to verify that the maps (1) transfer cocovers to cocovers, or, equivalently,
for any finite set {Ti | i ∈ J} of topologizing subcategories of CX , there are equalities

( ⋂
i∈J

Ti

)∞ =
⋂
i∈J

T∞
i and

( ⋂
i∈J

Ti

)− =
⋂
i∈J

T−
i .

The first equality is proven in [R4, 4.6.1] and the second equality is the assertion [R4, 4.1].
Altogether proves (b) and (c). The assertion (a) is a consequence of (b) and (c).
In fact, for any finite set {S, Ti | i ∈ J} of thick subcategories, we have by (b)

⋂
i∈J

(Ti � S) =
⋂
i∈J

(S • Ti)∞ =
( ⋂

i∈J

S • Ti

)∞ =
(
S • (

⋂
i∈J

Ti)
)∞ = S �

( ⋂
i∈J

Ti

)
,

Similarly, if {S, Ti | i ∈ J} are Serre subcategories, then it follows from (c) that
⋂
i∈J

(Ti ∨ S) =
⋂
i∈J

(S • Ti)− =
( ⋂

i∈J

S • Ti

)− =
(
S • (

⋂
i∈J

Ti)
)− = S ∨

( ⋂
i∈J

Ti

)
,

hence the assertion.

A1.5. Monoidal subcategories of (T(X), •) and topologies on spectra. Any
full monoidal subcategory G of (T(X), •) closed under arbitrary intersections defines a
topology τG on Spec0

t (X) (hence on Spec(X)) by taking V 0
t (T) = {P ∈ Spec0

t (X) | P ⊆
T} (resp. V (T) = {P ∈ Spec(X) | P ⊆ T}), T ∈ G, as the set of closed subsets.

The map G �−→ τG is a surjective map from the family of full monoidal subcategories
of (T(X), •) closed under arbitrary intersections onto the set of topologies on Spec0

t (X)
which are coarser than the topology τ0

t corresponding to T(X).
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A1.6. Zariski topology. Suppose that the category CX has supremums of sets
of subobjects (for instance, CX has infinite coproducts). Then, by [R, III.6.2.2], the
intersection of any set of reflective topologizing subcategories is a reflective topologizing
subcategory. Taking as G the subcategory Tc(X) of reflective topologizing subcategories,
we obtain the Zariski topology on Spec0

t (X) which we denote by τ0
z . Its restriction to

Spec(X) will be denoted by τz.

A1.6.1. Proposition. Suppose CX has the property (sup) and a generator of finite
type. Then the topological space (Spec(X), τz) is quasi-compact.

Proof. See [R, III.6.5.2.1].

A1.6.2. Example. Example A1.2.6 shows that if CX is the category of quasi-
coherent sheaves on a (commutative) scheme X, then the elements of Tc(X) are categories
of quasi-coherent sheaves on closed subschemes of X. Suppose that the scheme X is quasi-
compact and quasi-separated (more generally, quasi-compact and the embeddings of every
point has a direct image functor). Then Spec(X) is the set of points of the underlying
space of the scheme X and closed sets of the Zariski topology on Spec(X) are spectra of
closed subschemes. So that the Zariski topology on Spec(X) coincides with the Zariski
topology in the conventional sense.

A1.6.3. Example: Zariski topology on an affine noncommutative scheme.
Let CX = R − mod for an associative unital ring R. It follows from A1.6.1 that the
topological space (Spec(X), τz) is quasi-compact.

This fact is a special case of a much stronger assertion: the open subset U of the space
(Spec(X), τz) is quasi-compact iff U = U(Tα) = Spec(X)−V (Tα) for a finitely generated
two-sided ideal α of the ring R (cf. A1.2.1).

Two different proofs of this theorem can be found in [R]: I.5.6 and III.6.5.3.1. One of
its consequences is that quasi-compact open sets form a base of the Zariski topology on
Spec(X). In fact, every two-sided ideal α is the supremum of a set {αi | i ∈ J} of its
two-sided subideals, so that U(Tα) = U(sup(Tαi

| i ∈ J)) =
⋃
i∈J

U(Tαi
) (see A1.2.1).

A1.6.4. Note. Unlike the commutative case, the Zariski topology is trivial or too
coarse in many important examples of noncommutative affine schemes. It follows from the
previous discussion that if CX = R−mod, then the Zariski topology on Spec(X) is trivial
iff R is a simple ring (i.e. it does not have non-trivial two-sided ideals). In particular,
the Zariski topology on Spec(X) is trivial if CX is the category of D-modules on the
affine space An, because the algebra An of differential operators on An is simple. It is not
sufficiently rich in the case when CX is the category of representations of a semisimple Lie
algebra over a field of characteristic zero.

A1.7. Some other canonical topologies. A way to define a topology on Spec0
t (X)

(and on Spec(X)) is to single out a class of topologizing subcategories, Ξ, of CX , take
the smallest monoidal subcategory GΞ of (T(X), •) which contains Ξ and is closed under
arbitrary intersections (which are products in (T(X),⊆)) and obtain this way the topology
τ0
GΞ

. This is the same as taking the smallest topology on Spec0
t (X) for which the sets

V 0
t (T), T ∈ Ξ, are closed.
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A1.7.1. The topology τ∗. For instance, taking as Ξ the class of all topologiz-
ing subcategories [M ], where M is an object of finite type, we obtain a topology τ∗ on
Spec(X) which in the case when CX is the category of modules over a commutative ring
(more generally, the category of quasi-coherent sheaves on a quasi-compact quasi-separated
scheme; see A1.2.6 above) coincides with the Zariski topology. It is drastically different in
most of noncommutative cases. For any simple ring R (in particular, for any Weyl algebra
An), the Zariski topology is trivial, while the topology τ∗ separates distinct points of the
spectrum in Kolmogorov’s sense, i.e. (Spec(X), τ∗) is a Kolmogorov’s space.

A1.7.2. The topology τs. We take as Ξ the set Spec(X) and denote the corre-
sponding topology on Spec(X) by τs. This means that finite unions of sets V (P) form a
base of the closed sets of the topology τs.

Notice that if the category CX has enough objects of finite type (i.e. every nonzero
object of CX has a nonzero subobject of finite type), then the topology τs is coarser than
the topology τ∗. In fact, in this case every element P of Spec(X) is of the form [M ] for
some object M of finite type.

A1.8. Functorialities.

A1.8.1. Proposition. Let CX and CY be abelian categories, and let X
f−→ Y be a

continuous morphism such that adjunction arrows f∗f∗
εf−→ IdCX

and IdCY

ηf−→ f∗f
∗

are monomorphisms. Then the map T �−→ [f∗−1
(T)] defines a morphism of monoids

(T(X), •)
T(f)
−−−→ (T(Y ), •).

Proof. (a) Let X
f−→ Y be a morphism such that f∗ is semi-exact; i.e. f∗ maps any

exact sequence M ′ −→ M −→ M ′′ to an exact sequence (for instance, f∗ is right, or left
exact). Then f∗−1

(T) • f∗−1
(S) ⊆ f∗−1

(T • S) for any pair T, S of subcategories of CX .
In particular, [f∗−1

(T)] • [f∗−1
(S)] ⊆ [f∗−1

(T • S)].
In fact, if M ′ −→ M −→ M ′′ is an exact sequence with f∗(M ′) ∈ ObS and f∗(M ′′) ∈

ObT, then f∗(M) ∈ ObT • S, because the sequence f∗(M ′) −→ f∗(M) −→ f∗(M ′′) is
exact, due to the semi-exactness of the functor f∗.

(a1) Notice that the inverse image functor of a continuous morphism is right exact,
hence semi-exact.

(b) In order to prove the inverse inclusion, [f∗−1
(T)] • [f∗−1

(S)] ⊇ [f∗−1
(T • S)], it

suffices to show that [f∗−1
(T)] • [f∗−1

(S)] ⊇ f∗−1
(T • S).

Let f∗(M) ∈ ObT • S; i.e. there is an exact sequence L′ −→ f∗(M) −→ L′′ with
L′ ∈ ObS and L′′ ∈ ObT. Consider the commutative diagram

f∗f∗(L′) −−−→ f∗f∗f
∗(M) −−−→ f∗f∗(L′)

εf (L′)
⏐⏐� εff∗(M)

⏐⏐�
⏐⏐� εf (L′′)

L′ −−−→ f∗(M) −−−→ L′′

Since εf is a monomorphism and εff∗(M) is a strict epimorphism (coretraction), εff∗(M)
is an isomorphism. The monomorphness of εf (L′) and εf (L′′) imply that f∗f∗(L′) ∈ ObS
and f∗f∗(L′′) ∈ ObT. Thus, we have an exact sequence f∗(L′) −→ f∗f

∗(M) −→ f∗(L′′)
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with f∗(L′) ∈ Obf∗−1
(S) and f∗(L′′) ∈ Obf∗−1

(T), hence f∗f
∗(M) ∈ Obf∗−1

(T) • f∗−1
(S).

If the adjunction morphism M −→ f∗f
∗(M) is a monoarrow, the object M belongs to the

subcategory [f∗−1
(T) • f∗−1

(S)] = [f∗−1
(T)] • [f∗−1

(S)].

A1.8.2. Note. The conditions of A1.8.1 hold if CY is a coreflective full subctegory
of CX and f∗ is the inclusion functor CY ↪→ CX . In this case, the adjunction arrow
IdCY

ηf−→ f∗f
∗ is an isomorphism, and the second adjunction arrow, f∗f∗

εf−→ IdCX
, is

a monomorphism.

Appendix 2. Complements on Spec0
t (X) and Spec(X).

A2.1. The difference between Spec0
t (X) and Spec(X). The following two

assertions provide examples of elements of Spec0
t (X) which do not belong to Spec(X).

A2.1.1 Proposition. Let M be a semisimple object of the category CX . Then the
topologizing subcategory [M ] spanned by M belongs to Spec0,0

t (X) = Spec0
t (X)−Spec(X)

iff M is isomorphic to an infinite coproduct of copies of a simple object L.
The topologizing subcategory [M ] belongs to Spec(X) iff M is isomorphic to a finite

coproduct of copies of a simple object L.

Proof. (a) Let M be isomorphic to the coproduct LJ of J copies of a simple object L.
(a1) If J is finite, then [M ] = [L] is a closed point of Spec(X).
Conversely, if [M ] belongs to Spec(X), then [M ] = [L], or, equivalently, L � M . The

latter means that M is a subquotient of a finite coproduct of copies of the simple object
L, hence M is isomorphic to a finite coproduct of copies of L.

(a2) Suppose that J is infinite and the object M belongs to the Gabriel product
S2 • S1 of two topologizing subcategories of CX ; that is there exists an exact sequence
0 −→ M1 −→ M −→ M2 −→ 0 such that Mi ∈ ObSi, i = 1, 2. The objects M1 and M2,
being subquotients of the semisimple object LJ are isomorphic to coproducts of resp. J1

and J2 copies of L. Since J is infinite, then either J1 or J2 should be isomorphic to J . If
Ji � J , then Mi � M , hence M ∈ ObSi.

(b) If M is a semisimple object which has non-isomorphic simple components, then
M � M1 ⊕ M2, where M1, M2 are nonzero objects and Hom(M1, M2) = 0. This implies
that [M ] = [M1] • [M2] and M does not belong to [M1]

⋃
[M2]. By 4.3(a), [M ] is not an

element of Spec0
t (X).

A2.1.2. Corollary. If M is isomorphic to the product of infinite set of copies of a
simple object of the category CX , then [M ] belongs to Spec0,0

t (X).

Proof. For every object N of CX , let No denote the corresponding object of the dual
category CXo = Cop

X . The object Mo is isomorphic to the coproduct of an infinite set of
copies of a simple object Lo; hence, by A2.1.1, the topologizing subcategory [Mo] belongs
to Spec0,0

t (Xo). But, as it was observed in 4.2, Spec0
t (X) is naturally isomorphic to

Spec0
t (X

o); in particular, [M ] belongs to Spec0
t (X). It remains to show that [M ] does

not belong to Spec(X).
Suppose that, on the contrary, [M ] belongs to Spec(X), i.e. [̂M ] = 〈M〉 is a Serre

subcategory. Then M has a nonzero subquotient, M ′, which is 〈M〉-torsion free. It follows
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that [M ] = [M ′]. Every subquotient of a product of a family of simple objects is isomorphic
to the product of its subfamily. In particular, M ′ is isomorphic to the product of J copies
of the simple object L; hence the simple object L is a subobject of M ′. Since M ′ belongs
to Spec(X), this implies that L � M ′, hence M ′ is isomorphic to a finite product of copies
of L. But then the equality [M ] = [M ′] implies that L � M , hence M is isomorphic to a
finite product of copies of L, which contradicts to the initial hypothesis.

A2.1.3. Note. Given an object L and a set J , let L⊕J (resp. LΠJ) denote the direct
sum, (resp. product) of J copies of the object L. Let L be a simple object of the category
CX , and let J and I be infinite sets such that Card(I) < Card(J). Then there are proper
inclusions [L⊕J ] � [LΠJ ] � [LΠI ] � [L⊕I ] � [L⊕J ]. In particular, [L⊕J ], [L⊕I ], [LΠJ ], and
[LΠI ] are four distinct elements of Spec0,0

t (X).

A2.2. Functorialities and topologies. For any topologizing subcategory T of the
category CX , set

U1
t (T) = {P ∈ Spec1

t (X) | T ⊆ P} and U0
t (T) = {Q ∈ Spec0

t (X) | Q � T}.

A2.2.1. Proposition. (a) If T, S are topologizing categories, then

U0
t (T • S) = U0

t (T)
⋂

U0
t (S) and U1

t (T • S) = U1
t (T)

⋂
U1

t (S).

In particular, U i
t (T) = U i

t ([T]•), where [T]• is the thick subcategory generated by T
and i = 0, 1.

(b) U0
t (

⋂
j∈J

Tj) =
⋃
j∈J

U0
t (Tj) for any family {Tj | j ∈ J} of topologizing categories.

(c) Suppose that T is a thick subcategory of CX . Then there is a commutative diagram

Spec0
t (X) ←−−− U0

t (T) −−−→ Spec0
t (X/T)⏐⏐�

⏐⏐�
⏐⏐�

Spec1
t (X) ←−−− U1

t (T) −−−→ Spec1
t (X/T)

(4)

of injective maps.

Proof. (a) The equality U0
t (T • S) = U0

t (T)
⋂

U0
t (S) follows from 4.3(a).

The inclusions S ⊆ T • S ⊇ T imply that U1
t (T • S) ⊆ U1

t (T)
⋂

U1
t (S). The inverse

inclusion follows from the fact that elements of U1
t (−) are thick subcategories: if P is a

thick subcategory containing S and T, then P contains T • S.
(b) The equality U0

t (
⋂
j∈J

Tj) =
⋃
j∈J

U0
t (Tj) is straightforward.

(c) Let T be a thick subcategory of CX , and let P ∈ U1
t (T), i.e. T ⊆ P �= Pt. Then

the topologizing subcategory (T • Pt • T)/T of CX/T coincides with (P/T)t. One can see
that (T • Pt • T)/T �= P/T, because Pt �= P; that is P/T is an element of Spec1

t (X/T).
The map U1

t (T) −→ Spec1
t (X/T) assigns to each P its quotient P/T.

The map U0
t (T) −→ Spec0

t (X/T) assigns to each Q ∈ U0
t (T) the topologizing subcat-

egory QT generated by the image of Q in CX/T, which coincides with (T • Q • T)/T (see
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5.1.1). Since Q � T, the topologizing subcategory T is contained in the thick subcategory
Q̂; hence Q̂/T is a thick subcategory of the quotient category CX/T. One can see that
Q̂/T = Q̂T; so that QT belongs to Spec0

t (X/T).

A2.2.1.1. Corollary. Suppose that T is a thick subcategory of CX . Then there is a
commutative diagram

Spec(X) ←−−− U0,1
t (T) −−−→ Spec(X/T)

�
⏐⏐�

⏐⏐�
⏐⏐��

Spec1,1
t (X) ←−−− U1,1

t (T) −−−→ Spec1,1
t (X/T),

(5)

where U1,1
t (T) = {P ∈ U1

t (T) | P = P−}, U0,1
t (T) = {Q ∈ Spec(X) | Q � T}, and all

horizontal arrows are injective maps.

Proof. The assertion is a consequence of A2.2.1(c).

A2.2.2. The ’specialization’ topology on Spec0
t (X). It follows from the asser-

tions A2.2.1 (a) and (b) that {U0
t (T) | T ∈ T(X)} is the set of open sets of a topology on

Spec0
t (X) which we denote by τ0

t . Let V 0
t (T) be the complement to U0

t (T) in (Spec0
t (X),

i.e.
V 0

t (T) = {Q ∈ Spec0
t (X) | Q ⊆ T}.

Recall that a topological space X is called sober if every irreducible closed subset of X
has a unique generic point.

A topological space is called a Kolmogorov’s space if for every pair of its distinct points,
one of the points has an open neighborhood which does not contain the other point.

A2.2.3. Proposition. (Spec0
t (X), τ0

t ) is a sober Kolmogorov’s topological space.

Proof. (a) Let Q1 and Q2 be distinct elements of (Spec0
t (X), τ0

t ). If Q1 � Q2, then
Q1 ∈ U0

t (Q2) �∈ Q2. This shows that (Spec0
t (X), τ0

t ) is a Kolmogorov’s space.
(b) For every topologizing subcategory T, let Tred,0 denote the supremum of all Q ∈

V 0
t . Here red stands for ’reduced’. It follows that Tred,0 is the smallest topologizing

subcategory of CX such that V 0
t (Tred,0) = V 0

t (T).
The closed set V 0

t (T) is irreducible iff Tred,0 is an element of Spec0
t (X).

In fact, suppose that V 0
t (T) is irreducible, and let S1, S2 be a pair of topologizing

subcategories such that Tred,0 ⊆ S1 • S2. Then

V 0
t (T) = V 0

t (Tred,0) ⊆ V 0
t (S1 • S2) = V 0

t (S1)
⋃

V 0
t (S2).

Since V 0
t (T) is irreducible, it is contained in V 0

t (Si) for i = 1, or i = 2. But then Tred,0 ⊆ Si

for the same i. This shows that Tred,0 belongs to Spec0
t (X).

Conversely, if Q belongs to Spec0
t (X) and S1, S2 are topologizing subcategories such

that V 0
t (Q) ⊆ V 0

t (S1)
⋃

V 0
t (S2) = V 0

t (S1 • S2). Then Q ⊆ S1 • S2, hence Q ⊆ Si for i = 1
or 2, which, in turn, means that V 0

t (Q) ⊆ V 0
t (Si).

Altogether proves that the topological space (Spec0
t (X), τ0

t ) is sober.
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A2.3. The spectrum Spec(X) as a subspace of (Spec0
t (X), τ0

t ). The topology
τ0
t on Spec0

t (X) (cf. A2.2.2) induces the topology τ� on Spec(X) (see 1.6). Its closed
sets are V (T) = {Q ∈ Spec(X) | Q ⊆ T}, where T runs though the family T(X) of
topologizing subcategories of CX .

For every topologizing subcategory T, let Tred denote the supremum of all Q ∈ V (T).
It follows that Tred is the smallest topologizing subcategory of CX such that V (Tred) =
V (T). We call a topologizing subcategory T reduced if T = Tred.

One can see that the map T �−→ V (T) is a bijection between the preorder Tred(X)
of reduced topologizing subcategories and the preorder of closed subsets of (Spec(X), τ�)
such that V (sup(T, S)) = V (T)

⋃
V (S).

A2.3.1. Proposition. (a) The subspace V (T) is irreducible iff Tred belongs to
Spec(X).

Proof. (a) Let Tred ⊆ S1 • S2. Then V (Tred) ⊆ V (S1 • S2) = V (S1)
⋃

V (S2). Since
V (Tred) is irreducible, V (Tred) ⊆ V (Si) for i = 1, or 2. Therefore Tred ⊆ (Si)red ⊆ Si. By
4.3(a), this means that Tred is an element of Spec0

t (X).
(b) If T is reduced, i.e. T = Tred, then T ∈ Spec0

t (X) iff T ∈ Spec(X).
In fact, since T = Tred, there exists an object Q ∈ V (T) such that Q � T̂. This means

that T = Q.

A2.3.2. Proposition. (Spec(X), τ�) is a sober Kolmogorov’s space.

Proof. (a) It follows from A2.3.1 that every irreducible closed subset of Spec(X) is
of the form V (Q) for some Q ∈ Spec(X), i.e. (Spec(X), τ�) is a sober topological space.

(b) Let Q and Q′ be elements of Spec(X) such that Q � Q′. This means that the
closure of Q′ in the topology τ� does not contain Q; or, equivalently, there is an open
neighborhood of Q which does not contain the point Q′.

Appendix 3. Supports and specializations. Krull filtrations.

A3.1. Support in Spec(X). Let M be an object of an abelian category CX . The
support of M in Spec(X) is the set Supp(M) of all [P ] ∈ Spec(X) such that M � P , or,
equivalently, [P ] ⊆ [M ].

A3.2. Supports in Spec1(X) and in Spec−(X). The support of an object M of
CX in Spec1(X) is the set Supp1(X) of all P ∈ Spec1(X) such that M �∈ ObP.

The support of M in the S-spectrum is the set

Supp−(M) = Supp1(M)
⋂

Spec−(X) = Supp1(M)
⋂

Se(X).

A3.3. Lemma. Let M be an object of CX .
(a) The following conditions are equivalent:

(a1) P ∈ Supp1(M);
(a2) M � L for some nonzero object L of P� −P.

(b) The following conditions are equivalent:
(b1) P ∈ Supp−(M);
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(b2) M � L for some nonzero object L of P� = P� ∩ P⊥.

Proof. Let CX
q∗
P−→ CX/P be the localization functor at P ∈ Spec1(X).

(a1)⇒(a2). The condition P ∈ Supp−(M) means precisely that q∗P(M) �= 0. On the
other hand, q∗P(L′) is a quasi-final object of CX/P for every nonzero object L′ of P� −P.
Therefore, q∗P(M) � q∗P(L′). The latter means that there exists a diagram

M⊕n j′←− K ′ e′′−→ L′′ s−→ L′ (9)

such that Ker(j′) and Cok(s) are objects of P, e′′ is an epimorphism and s is a monomor-
phism. Replacing K ′ by K = K/Ker(j′) and L′ by the cokernel of the composition

Ker(j′) −→ K ′ e′′−→ L′′, we obtain the diagram M⊕n j←− K
e−→ L in which j is a

monomorphism and e is an epimorphism; i.e. M � L. Since q∗P(L) is isomorphic to q∗P(L′)
and L′ is an object of P� − P, the object L belongs to P� −P too.

(a2)⇒(a1) & (b2)⇒(b1). If M � L and L �∈ ObP, then M �∈ ObP, i.e. P ∈ Supp1(X).
(b1)⇒(b2). If P ∈ Supp−(M) and L′ is a nonzero object of P� ∩P⊥, then q∗P(M) �

q∗P(L′) which is expressed by the diagram (9). Since this time L′ is a P-torsion object, the

composition of Ker(j′) −→ K ′ e′′−→ L′′ is zero. Therefore, replacing K ′ by K = K ′/Ker(j′),

we obtain a diargram M⊕n j←− K
e′′−→ L′′ ↪→ L′ in which j is a monomorphism and e′′

is an epimorphism. So that M � L′′, where L′′ is a subobject of an object of P� ∩ P⊥,
hence L′′ belongs to P� ∩ P⊥.

A3.4. Proposition. Let P1, P2 be elements of Spec−(X). Then the following
conditions are equivalent:

(a) P2 ⊆ P1;
(b) for every nonzero object M1 of P�

1 ∩ P⊥
1 , there exists a nonzero object M2 of

P�
2 ∩ P⊥

2 such that M1 � M2.
(c) There exists a nonzero object M1 of P�

1 ∩P⊥
1 with the following property: for any

nonzero subobject L1 of M1, there is an object M2 of P�
2 ∩ P⊥

2 such that L1 � M2.

Proof. (a)⇒(b). If P2 ⊆ P1 and M1 is a nonzero object of P�
1 ∩ P⊥

1 ), then P2 ∈
Supp−(M1). By A3.3(b), there exists an object M2 of P�

2 ∩ P⊥
2 such that M1 � M2.

(b)⇒(a). Suppose that P2 � P1; and let N be an object of P2 − P1. In particular,
P1 ∈ Supp−(N). By A3.3(b), there exists a nonzero object M1 of P�

1 ∩ P⊥
1 such that

N � M1. By condition (b), M1 � M2 for some nonzero object M2 of P�
2 ∩ P⊥

2 which
implies that N � M2. The latter is impossible, because N ∈ ObP2 and M2 �∈ ObP2.
Therefore P2 ⊆ P1.

Obviously, (b)⇒(c).
(c)⇒(a). Replacing X by X/(P1 ∩ P2) and the objects M1 and M2 by their images

in CX/(P1∩P2), we can assume that P1 ∩ P2 = 0. Suppose that P2 �= 0. Then P2 is a local
subcategory. If P1 = 0, then CX is local too, and nonzero objects of P�

1 ∩ P⊥
1 = 0t are

precisely quasi-final objects of CX . Since P2 �= 0, it contains 0t; in particular, M1 ∈ ObP2.
This contradicts to the condition (c) according to which M1 � M2 for some M2 ∈ P�

2 ∩P⊥
2 .

Suppose now that both P1 and P2 are nonzero, hence both of them are local. There
exists a quasi-final object L2 of P2 and a monomorphism L2 −→ M1 such that M1/L2 ∈
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ObP1. By condition (c), there exists a nonzero object M2 of P�
2 ∩P⊥

2 such that L2 � M2.
Since L2 ∈ P2, we run into a contradiction again. Altogether shows that P2 = 0.

A3.5. The Krull filtration of Spec−(X) and the associated filtration of X.
Fix an abelian category CX . For every cardinal α, we define a subset S−

α (X) of Spec−(X)
as follows.

S−
0 (X) = ∅;

if α is not a limit cardinal, then S−
α (X) consists of all P ∈ Spec−(X) such that any

P ′ ∈ Spec−(X) properly contained in P belongs to S−
α−1(X);

if α is a limit cardinal, then S−
α (X) =

⋃
β<α

S−
β (X).

It follows from this definition (borrowed from [R, VI.6.3]) that S−
1 (X) consists of all

closed points of Spec−(X).
We denote by S−

ω (X) the union of all S−
α (X). The filtration {S−

α (X)} determines a
filtration

CX0 ↪→ CX1 ↪→ . . . CXα
↪→ . . . (5)

of the category CX (or the ’space’ X) by taking as CXα
the full subcategory of CX

generated by objects M such that Supp−(M) ⊆ S−
α (X). Recall that Supp−(M) = {P ∈

Spec−(X) | M �∈ ObP}. In particular, CXω
is the full subcategory of CX generated by all

M ∈ ObCX such that Supp−(M) ⊆ S−
ω (X).

It follows from the general properties of supports that CXα
is a Serre subcategory

of CX and Spec−(Xα) is naturally identified with S−
α (X); in particular, Spec−(Xω) is

identified with S−
ω (X).

A3.6. The Krull dimension. For every element P of Spec−(Xω), there is the
biggest cardinal, ht−(P), among all the cardinals α such that P �∈ S−

α (X). The cardinal
ht−(P) is called the hight of P ([R, VI.6.3]).

The Krull dimension of X is the supremum of all ht−(P), where P runs through
Spec−(Xω) (in [R] it is called the flat dimension).

An object M of CX is said to have a Krull dimension if it belongs to the subcategory
CXω

. Finally, the ’space’ X (or the category CX) has a Krull dimension if X = Xω (that
is CX = CXω

) and every nonzero object of CX has a nonempty support, i.e. CX0 = O.

A3.7. The Krull dimension and the Gabriel-Krull dimension. We recall the
notion of the Gabriel filtration of an abelian category as it is defined in [R, 6.6]. Let CX

be an abelian category. The Gabriel filtration of X assigns to every cardinal α a Serre
subcategory CX−

α
of CX which is constructed as folows:

Set CX−
0

= O.
If α is not a limit cardinal, then CX−

α
is the smallest Serre subcategory of CX con-

taining all objects M such that the localization q∗α−1(M) of M at CX−
α−1

has a finite
length.

If β is a limit cardinal, then CX−
β

is the smallest Serre subcategory containing all
subcategories CX−

α
for α < β.

Let CX−
ω

denote the smallest Serre subcategory containing all the subcategories CX−
α

.
It follows that the quotient category CX/X−

ω
has no simple objects.
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An object M is said to have the Gabriel-Krull dimension β, if β is the smallest cardinal
such that M belongs to CX−

β
.

The ’space’ X has a Gabriel-Krull dimension if X = X−
ω .

Every locally noetherian abelian category (e.g. the category of quasi-coherent sheaves
on a noetherian scheme, or the category of left modules over a left noetherian associative
algebra) has a Gabriel-Krull dimension.

It is argued in [R, VI.6] that if X has a Gabriel-Krull dimension, then the filtration
(5) coincides with the Gabriel filtration of the category CX . In particular, X has a Krull
dimension: X = Xω = X−

ω . Thus, the Krull dimension is an extension of the Gabriel-Krull
dimension to a wider class of ’spaces’.

A3.8. A description of Spec�(Xω). The filtration {S−
α (X)} of Spec−(X) induces,

via the isomorphism Spec�(X) ∼−→ Spec−(X) (defined in 6.4), a filtration {S�
α (X)} of

the spectrum Spec�(X). We call it the Krull filtration of Spec�(X).

A3.8.1. Proposition. The spectrum Spec�(Xω) of Xω is naturally isomorphic to⋃
α

Spec�(Xα/Xα−1), and Spec−(Xω) is isomorphic to
⋃
α

Spec−(Xα/Xα−1), where α

runs through non-limit cardinals. These isomorphisms are compatible with the isomor-
phisms Spec�(Xω) ∼−→ Spec−(Xω) and Spec�(Xα/Xα−1)

∼−→ Spec−(Xα/Xα−1).

Proof. More precisely,

Spec�(Xω) =
⋃
α

(S�

α (X) − S�

α−1(X)),

where α runs though non-limit cardinals, and for every non-limit cardinal α, there is a
natural isomorphism

S�

α (X) − S�

α−1(X) ∼−→ Spec�(Xα/Xα−1). (6)

The isomorphism (6) is given by the map S�
α (X) −→ T(X/Xα−1) which assigns to

every element P� of S�
α (X) the smallest topologizing subcategory [q∗α−1(P�)] of CX/Xα−1

spanned by the image of P�.
Let P ∈ Spec−(Xω), i.e. P ∈ Sα(X) for some α. Consider all cardinals β such that

CXβ
⊆ P. Since P is a Serre subcategory, the smallest Serre subcategory spanned by all

CXβ
coincides with CXα−1 for a non-limit cardinal α. The image P� = P� ∩ P⊥ of P in

Spec�(X) is an element of S�
α (X) − S�

α−1(X).

A3.9. The Krull filtrations and equivalences of categories.

A3.9.1. Proposition. Let CX and CY be abelian categories. Any category equiva-
lence CX

Θ−→ CY induces equivalences CXα

Θα−→ CYα
for all cardinals α. In particular, Θ

induces a category equivalence CXω

Θω−→ CYω

Proof. The argument is by (transfinite) induction. The assertion is, obviously, true
for α = 0. It is also true for α = 1: if P is a closed point of Spec−(X), then [Θ(P)] is a
closed point of Spec−(Y ).
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Suppose now that Θ induces equivalences CXα

Θα−→ CYα
for all cardinals α < β. We

claim that then it induces a category equivalence CXβ

Θβ−→ CYβ
.

(a) If β is a limit cardinal, then it follows from the definition of the filtration (cf.
A3.5), that CXβ

=
( ⋃

α<β

CXα

)−
. By the induction hypothesis, Θ induces a category

equivalence
⋃

α<β

CXα
−−−→

⋃
α<β

CYα
. It is easy to show that if Θ induces an equivalence

between a subcategory T of CX and a subcategory S of CY , then Θ induces an equivalence
T− −→ S−. In particular, Θ induces a category equivalence from CXβ

=
( ⋃

α<β

CXα

)− to

CYβ
=

( ⋃
α<β

CYα

)−
.

(b) Suppose now that β is not a limit cardinal. By the induction hypothesis, Θ in-
duces a category equivalence CXβ−1 −→ CYβ−1 ; hence Θ induces an equivalence between

quotient categories CX/Xβ−1

Θ̂β−1

−−−→ CY/Yβ−1 . The equivalence Θ̂β−1 induces an equiva-
lence C(X/Xβ−1)1 −−−→ C(Y/Yβ−1)1 . Notice that CXβ

is the preimage of C(X/Xβ−1)1 in CX .

Similarly for CYβ
. Therefore Θ induces a functor CXβ

Θβ

−−−→ CYβ
and its quasi-inverse,

Θ∗, induces a functor CYβ

Θ∗
β

−−−→ CXβ
. Since Θ is an equivalence, Θβ is an equivalence

with a quasi-inverse Θ∗
β .

A3.9.2. Proposition. Any category equivalence CX
Θ−→ CY induces isomorphisms

S−
α (X) ∼−→ S−

α (Y ) and S�

α (X) ∼−→ S�

α (Y )

for all cardinals α. In particular, Θ induces an isomorphisms

S−
ω (X) ∼−→ S−

ω (Y ) and S�

ω (X) ∼−→ S�

ω (Y ).

Proof. The assertion follows from A3.9.1 and from the fact that the natural isomor-
phisms

S−
α (X) � Spec−(Xα), S�

α (X) � Spec�(Xα)

are compatible with category equivalences for all cardinals α. In particular, we have
commutative diagrams

S−
ω (X)

∼−−−→ S−
ω (Y ) S�

ω (X)
∼−−−→ S�

ω (Y )
�
⏐⏐�

⏐⏐�� and �
⏐⏐�

⏐⏐��
Spec−(Xω)

∼−−−→ Spec−(Yω) Spec�(Xω)
∼−−−→ Spec�(Yω)

Details are left to the reader.
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A3.9.3. Corollary. Let CX be an abelian category and CX
Θ−→ CX an autoequiva-

lence.
(a) If P ∈ Spec−(Xω), then Θ(P) ⊆ P ⇔ [Θ(P)] = P ⇔ P ⊆ [Θ(P)].

(b) If P� ∈ Spec�(Xω), then Θ(P�) ⊆ P� ⇔ [Θ(P�)) = P� ⇔ P� ⊆ [Θ(P�)).

(a) If P ∈ Spec(Xω), then Θ(P) ⊆ P ⇔ [Θ(P)] = P ⇔ P ⊆ [Θ(P)].

Here [Θ(P)] and [Θ(P�)) coincide with strictly full subcategories of CX generated by
resp. Θ(P) and Θ(P�).

Proof. (a) (i) Let Θ(P) ⊆ P. If P � [Θ(P)], then ht−([Θ(P)]) < ht−(P). By A3.9.1,
this implies that ht−([Θ∗Θ(P)]) ≤ ht−([Θ(P)]) < ht−(P). But, since Θ∗ is a quasi-inverse
to Θ, [Θ∗Θ(P)] = P. Therefore P = [Θ(P)].

(ii) The implication P ⊆ [Θ(P)] ⇒ [Θ(P)] = P follows from (i), because the inclusion
P ⊆ [Θ(P)] is equivalent to the inclusion Θ∗(P) ⊆ P.

(b) The assertion (b) follows from (a) and the observation that the isomorphism
Spec−(X) ∼−→ Spec�(X) (cf. 6.4) is compatible with the actions of autoequivalences on
resp. Spec−(X) and Spec�(X).

(c) The assertion (c) follows from (b) and an observation that the canonical embedding

Spec(X) −→ Spec�(X), P �−→ P ∩ 〈P〉⊥

is compatible with the actions of autoequivalences on resp. Spec(X) and Spec�(X).
Details are left to the reader.

A4. Local properties of spectra and closed points.

A4.1. Closed points od spectra and Gabriel-Krull dimension. If X has a
Gabriel-Krull dimension, then the set Spec1,1

t (X)1 of the closed points of Spec1,1
t (X)

coincides with the set Spec−(X)1 of the closed points of Spec−(X). Since in this case
Spec−(X) = Spec1

Se(X), the spectra Spec1
Se(X), Spec−(X), and Spec1,1

t (X) have the
same sets of closed points.

A4.2. Lemma. Suppose that every nonzero object of CX has a non-empty support
in Spec(X) (for instance, CX has enough objects of finite type; cf. A3.1). Then for any
closed point P in Spec1,1

t (X) and for any thick subcategory T of CX such that T ⊆ P, the
subcategory P/T of CX/T is a closed point in Spec1,1

t (X/T).

Proof. By 3.2(ii), P = Q̂ for a uniquely determined by this equality element Q of
Spec(X), which is a closed point in Spec(X), since P is a closed point in Spec1,1

t (X).
We claim that image [q∗(Q)] of Q is T (X/T) is a closed point of Spec(X/T).

In fact, let Q′ be a nonzero topologizing subcategory of CX/T contained in [q∗(Q)].
This means that the preimage Q′′ = q∗

−1
(Q′) of Q′ in CX is a topologizing subcategory of

CX which does not contain T and is contained in q∗
−1

([q∗(Q)]). By 5.1.1, q∗
−1

([q∗(Q)]) =
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T • Q • T. Any object M of the subcategory T • Q • T can be described by the diagram

M ′
1 ←−−− 0⏐⏐�

0 −−−→ M1 −−−→ M −−−→ M2 −−−→ 0⏐⏐�
M ′′

1 −−−→ 0

(1)

which incorporates two short exact sequences such that the objects M ′
1 and M2, belong to

T, and M ′′
1 ∈ ObQ. One can see from this description that M is an object of T •Q•T−T

iff M ′′
1 is an object of Q − T. It follows from the diagram (1) that M ′′

1 ∈ Ob[M ]. Since
T � Q′′ ⊆ T • Q • T, the topologizing subcategory Q′′ ∩ Q is not contained in T. In
particular, it is nonzero. Let M be a nonzero element of Q′′∩Q. By hypothesis, Supp(M)
is non-empty; i.e. there exists an element Q̃ of Spec(X) such that Q̃ ⊆ [M ]. Thus, we
have inclusions Q̃ ⊆ [M ] ⊆ Q′′ ∩ Q ⊆ Q. Since Q is a closed point of Spec(X), the
inclusion Q̃ ⊆ Q implies that Q̃ = Q. Therefore the inclusions above can be replaced by
equalities. In particular, Q′′ ∩Q = Q, that is Q ⊆ Q′′ which means that Q′ coincides with
[q∗(Q)] = (T • Q • T)/T.

A4.2.1. Corollary. Suppose that every nonzero object of CX has a non-empty
support in Spec(X). Then every closed point of Spec1,1

t (X) is a closed point of Spec1(X).

Proof. Let P be a closed point of Spec1,1
t (X); and let P1 be an element of Spec1(X)

such that P1 ⊆ P. By A4.2, P/P1 is a closed point of Spec1,1
t (X/P1). But, X/P1 is

a local ’space’, hence it has a unique closed point – 0. This shows that P/P1 = 0, i.e.
P = P1.

A4.3. Proposition. Suppose that CX is an abelian category with the property (sup).
Let {Ti | i ∈ J} be a finite set of Serre subcategories of CX such that

⋂
i∈J

Ti = 0. Then

(a) A point P of Spec−(X) is closed iff P/Ti is a closed point of Spec−(X/Ti) for
every i ∈ J such that Ti ⊆ P.

(b) Suppose that every nonzero object of CX has a nonzero support in Spec(X). Then
a point P of Spec1,1

t (X) is closed iff P/Ti is a closed point of Spec1,1
t (X/Ti) for every

i ∈ J such that Ti ⊆ P.

Proof. (a) If P ∈ Spec−(X), then P/Ti ∈ Spec−(X/Ti) for all i such that Ti ⊆ P.
And if P is a closed point, then P/Ti is a closed point.

In fact, if Ti ⊆ P, then P/Ti is an element of Spec1(X/Ti); and P/Ti is a Serre subcat-
egory of CX/Ti (due to the reflectivity of the Serre subcategory Ti which is a consequence
of the property (sup)). Therefore, it belongs to Spec−(X/Ti). If P ′ ∈ Spec−(X/Ti)
and P ′ ⊆ P, then the preimage P ′′ of P ′ in CX is a Serre subcategory which belongs
to Spec−(X) and is contained in P. Thus, if P is a closed point of Spec−(X/Ti), then
P ′′ = P, hence P ′ = P/Ti.

(a1) Conversely, let P/Ti be closed for all i ∈ J such that Ti ⊆ P. Then we claim that
P is closed. If the number Card(J) = 1, then the statement is true by a trivial reason. In
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the general case, let P ′ be an element of Spec−(X) such that P ′ ⊆ P. And let JP′
denote

the set {i ∈ J | Ti � P ′}. Since J is finite, by 9.3, there exists i ∈ J such that Ti ⊆ P ′.
Therefore Card(JP′

) < Card(J). By (the end of the argument of) A1.4.1(c) (or [R4, 4.2]),

P ′ = (
⋂
i∈J

Ti) ∨ P ′ =
⋂
i∈J

(Ti ∨ P ′) =
⋂

i∈JP′
(Ti ∨ P ′).

So that {T ′
i = (Ti ∨ P ′)/P ′, i ∈ JP′} is a set of Serre subcategories of CX/P ′ whose

intersection is zero. The point P̃ = P/P ′ of Spec−(X/P ′) is such that that P̃/T ′
i is a closed

point of Spec−(X/(Ti∨P ′) for all i ∈ JP′
such that T ′

i ⊆ P̃. Since Card(JP′
) < Card(J),

by induction hypothesis, P̃ is a closed point of X/P ′. The latter ’space’ being local, this
means that P̃ = 0, or, equivalently, P = P ′.

(b) If P is a closed point of Spec1,1
t (X), then, by A4.2, P/Ti is a closed point of

Spec1,1
t (X/Ti) for every i ∈ J such that Ti ⊆ P.

Conversely, suppose that P ∈ Spec1,1
t (X) is such that P/Ti is a closed point of the

spectrum Spec1,1
t (X/Ti) if Ti ⊆ P. Let P ′ be an element of Spec1,1

t (X) such that P ′ ⊆ P.
By 9.3, there exists i ∈ J such that Ti ⊆ P ′; in particular, Ti ⊆ P. Since P ′/Ti is a point of
Spec1,1

t (X/Ti) and P/Ti is a closed point, the inclusion P ′/Ti ⊆ P/Ti implies that P ′/Ti

and P/Ti coincide. Therefore, P ′ = P.

A4.3.1. Corollary. Suppose that CX is an abelian category with the property (sup).
Let {Ti | i ∈ J} be a finite set of Serre subcategories such that

⋂
i∈J

Ti = 0 and for every

i ∈ J , any element of Spec−(X/Ti) contains a closed point of Spec−(X/Ti). Then every
element of Spec−(X) contains a closed point of Spec−(X).

Proof. Let P ∈ Spec−(X). Since
⋂
i∈J

Ti = 0, there exists JP = {i ∈ J | Ti ⊆ P}

is non-empty. Fix an i ∈ JP . By hypothesis, Pi ⊆ P, where Pi/Ti is a closed point of
Spec−(X/Ti). If JPi

= {i}, then, by A4.3(a), Pi is a closed point of Spec−(X). If JPi

contains more than one element, we take j ∈ JPi
−{i} and repeat the argument replacing

P by Pi; and so on. Since J is finite, the process stabilizes. As a result, we find an element
P ′ of Spec−(X) such that P ′ ⊆ P and P ′/Tj is a closed point of Spec−(X/Tj for every
j ∈ JP′ . By A4.3(a), the latter means that P ′ is a closed point of Spec−(X).

A4.3.2. Corollary. Suppose that CX is an abelian category with the property (sup).
Let {Ti | i ∈ J} be a finite set of Serre subcategories such that

⋂
i∈J

Ti = 0 and for every

i ∈ J , the set Spec1,1
t (X/Ti)1 of the closed points of Spec1,1

t (X/Ti) contains the set
Spec−(X/Ti)1 of the closed points of Spec−(X/Ti). Then Spec−(X)1 ⊆ Spec1,1

t (X)1.
Suppose that, in addition, one of the following conditions holds:

(a) For all i ∈ J , every element of Spec−(X/Ti) contains a closed point.
(b) Every nonzero object of CX has a non-empty support in Spec(X).

Then Spec−(X)1 and Spec1,1
t (X)1 coincide.

Proof. Let P be a closed point of Spec−(X). By A4.3, P/Ti is a closed point of
Spec−(X/Ti) for all i ∈ JP = {j ∈ J | Tj ⊆ P}. By hypothesis, P/Ti is a closed point of
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Spec1,1
t (X/Ti) for all i ∈ JP . By 9.6.1, P ∈ Spec1,1

t (X). Since P is a closed point of the
space Spec−(X), it is, definitely, a closed point of its subspace Spec1,1

t (X). This shows
the inclusion Spec−(X)1 ⊆ Spec1,1

t (X)1.
(a) Let P ∈ Spec1,1

t (X). Since P is an element of Spec−(X), by A4.3.1, P ⊇ P ′,
where P ′ is a closed point of Spec−(X). By A4.3(a), for every i ∈ JP′ = {j ∈ J | Tj ⊆ P ′},
the quotient subcategory P ′/Ti is a closed point of Spec−(X/Ti), hence, by hypothesis,
it belongs to Spec1,1

t (X/Ti). By 9.6.1, the latter implies that P ′ belongs to Spec1,1
t (X).

Since it P ′ is a closed point of Spec−(X), it is a closed point of Spec1,1
t (X).

(b) If every nonzero object of CX has a non-empty support, then, by A4.2.1, we have
the inverse inclusion: Spec1,1

t (X)1 ⊆ Spec−(X)1.

A4.4. Proposition. Let CX be an abelian category and {Ti | i ∈ J} a finite set of
thick subcategories such that

⋂
i∈J

Ti = 0. Suppose that each category CX/Ti
has enough ob-

jects of finite type. Then closed points of Spec(X) are in a natural bijective correspondence
with the isomophism classes of simple objects of CX .

Proof. Let u∗
i denote the localization functor CX −→ CX/Ti. Let M be an object of

Spec(X) such that [M ] be a closed point of Spec(X). Since
⋂
i∈J

Ti = 0, there is an i ∈ J

such that M �∈ Ti. Therefore, [u∗
i (M)] is a closed point of Spec(X/Ti). Since the category

CX/Ti
= CX/Ti has enough objects of finite type, all closed points of Spec(X/Ti) corre-

spond to simple objects. In particular, u∗
i (M) is the direct sum of a finite number of copies

of a simple object u∗
i (L), and there is a monomorphism u∗

i (L) −→ u∗
i (M). This monomor-

phism is described by a diagram L
s←− L′ j′−→ M such that u∗

i (s) is an isomorphism and
Ker(j′) belongs to Ti. Since the object M is Ti-torsion free, the object Li = L′/Ker(j′)
is Ti-torsion free too. It follows that u∗

i (Li) is isomorphic to u∗
i (L). In particular, Li is a

nonzero subobject of M . Since M ∈ Spec(X), the object Li also belongs to Spec(X) and
[Li] = [M ]. So, we replace M by Li. Repeating this procedure consecutively for all j ∈ J
such that M does not belong to Tj , we replace M by its subobject, N such that for any
j ∈ J , the object u∗

j (N) is either zero, or simple. Since N belongs to Spec(X), it follows

that for every nonzero monomorphism N ′ h−→ N , its image u∗
i (h) is an isomorphism for

every i ∈ J . The condition
⋂
i∈J

Ti = 0 means that the family of localization functors

{CX
u∗

i−→ CX/Ti | i ∈ J} is conservative; hence h is an isomorphism. This shows that N is
a simple object. Therefore, M is isomorphic to the coproduct of a finite number of copies
of N .

The following proposition is a refinement of 1.6.2.

A4.5. Proposition. Suppose that CX is an abelian category with the property (sup).
Let {Ti | i ∈ J} be a finite set of Serre subcategories of CX such that

⋂
i∈J

Ti = 0, and for

every i ∈ J , the category CX/Ti
has enough objects of finite type. Then

(a) The intersection Spec(X)
⋂

Spec(Xo) coincides with the set Spec(X)1 of closed
points of Spec(X), and closed points of Spec(X) are of the form [M ], where M runs
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through simple objects of CX .
(b) Closed points of Spec−(X)) are in bijective correspondence with the isomorphism

classes of simple objects of CX .

Proof. (a) By A4.4, closed points of Spec(X) are of the form [M ], where M runs
through simple objects of CX . Since simple objects of CX and Cop

X = CXo are the same,
the set Spec(X)1 of closed points of Spec(X) is contained in Spec(X) ∩ Spec(Xo).

(a1) Let U denote the finite cover {Ui = X/Ti
ui−→ X | i ∈ J} associated with

{Ti | i ∈ J}. And let Spec1,1
℘ (U) = {P ∈ Th(X) | P/Ti ∈ Spec1,1

t (Ui) if Ti ⊆ P}. By
9.6.1, the natural map Spec1,1

t (X) −→ Spec1,1
℘ (U) is an isomorphism. This isomorphism

and the embedding Spec1,1
t (Xo) −→ Spec1,1

℘ (Uo) induce an injective map

Spec1,1
t (X)

⋂
Spec1,1

t (Xo) −−−→ Spec1,1
℘ (U)

⋂
Spec1,1

℘ (Uo), (2)

where
Spec1,1

℘ (U)
⋂

Spec1,1
℘ (Uo) =

{P ∈ Spec−(X) | P/Ti ∈ Spec1,1
t (Ui)

⋂
Spec1,1

t (Uo
i ) if Ti ⊆ Pi}.

Since each category CUi
= CX/Ti, i ∈ J, has enough objects of finite type, it follows

from 1.6.2 and the isomorphism Spec(Ui)
∼−→ Spec1,1

t (Ui) (see 3.2(ii)) that the intersec-
tion Spec1,1

t (Ui)
⋂

Spec1,1
t (Uo

i ) coincides with the set of closed points of Spec1,1
t (Ui) and

these closed points are in bijective correspondence with isomorphism classes of simple ob-
jects of the category CUi

. It follows now from (the argument of) A4.4 and the isomorphism
Spec(X) ∼−→ Spec1,1

t (X) (see 3.2(ii)) that the map (2) above is bijective.
(b) Notice that the conditions of this proposition imply the conditions (a) and (b) of

A4.3.2. In particular, by A4.3.2, the spectra Spec−(X) and Spec1,1
t (X) have the same

closed points. The assertion follows this fact and from (a) above.

A4.6. Semilocal ’spaces’.

A4.6.1. Proposition. Suppose that there is a finite subset {Pi | i ∈ J} of Spec−(X)
such that

⋂
i∈J

Pi = 0. Then P ∈ Spec−(X) is a closed point iff it is a closed point of

Spec1,1
t (X), i.e. it is of the form P = 〈L〉 for an object L of Spec(X).
The set of closed points of Spec−(X) coincides with the set of minimal elements of

{Pi | i ∈ J}.
Proof. Let P be a closed point of Spec−(X)). By 9.3, the set JP = {i ∈ J | Pi ⊆ P}

is not empty. Since P is a minimal element of Spec−(X), the set JP consists of all i ∈ J
such that Pi = P. Thus, P/Pi is the zero subcategory of CX/Pi which is the only closed
point of the local space X/Pi = X/P. By 9.6.1, P is an element of Spec1,1

t (X). Since
Spec1,1

t (X) is a subset of the spectrum Spec−(X) and P is a closed point of the latter,
it is a closed point of Spec1,1

t (X).
This argument shows that the set of closed points of Spec−(X) is a subset of the set

of minimal elements of {Pi | i ∈ J}, and that it is a subset of closed point of Spec1,1
t (X).

Notice that every minimal element of {Pi | i ∈ J} is a closed point of Spec−(X).
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In fact, let Pj be a minimal element of the set {Pi | i ∈ J}, and let P ′ ∈ Spec−(X)
be a subcategory of Pj . The set JP′ = {i ∈ J | Pi ⊆ P ′} is non-empty, and Pm ⊆ P ′ ⊆ Pj

for every m ∈ JP′ . Since Pj is a minimal element, this implies that Pm = P ′ = Pj .

Let P ∈ Spec1,1
t (X). The set JP = {i ∈ J | Pi ⊆ P} is not empty. Let Pi be a

minimal element of {Pj | j ∈ JP}. Then, by the argument above, Pi is a closed point of
Spec−(X), hence it is a closed point of Spec1,1

t (X) which is contained in P. Thus, if P
is a closed point of Spec1,1

t (X), then Pi = P.

A4.6.2. Corollary. Let CX be an abelian category. The following conditions are
equivalent:

(a) There is a finite subset {Pi | i ∈ J} of Spec−(X) such that
⋂
i∈J

Pi = 0.

(b) The set Spec−(X)1 of closed points of Spec−(X) is finite, and the intersection⋂
P∈Spec−(X)1

P is zero.

(c) The set Spec−(X)1 is finite, and the support in Spec−(X) of any nonzero object
of CX contains a closed point.

(d) The set Spec1,1
t (X)1 of closed points of Spec1,1

t (X) is finite, and the support in
Spec(X) of every nonzero object of CX contains a closed point.

Proof. Obviously, (b) ⇒ (a). The implication (a) ⇒ (b) follows from A4.6.1.
(b) ⇔ (c). If

⋂
P∈Spec−(X)1

P = 0, then for every nonzero object M of CX , there

exists a closed point P of Spec−(X) such that M �∈ ObP, which means precisely that
P ∈ Supp−(M). Conversely, if every nonzero object of CX has an element of Spec−(X)1
in its support, then

⋂
P∈Spec−(X)1

P = 0.

(d) ⇒ (a). The support in Spec(X) of a nonzero object M contains a point Q, that
is Q ⊆ [M ], means precisely that [M ] � Q̂, or, equivalently, M �∈ ObQ̂. By 3.2(ii), Q is a
closed point of Spec(X) iff Q̂ ∈ Spec1,1

t (X)1. Therefore, the condition (d) implies that⋂
P∈Spec1,1

t (X)1

P = 0.

The implication (a) ⇒ (b) follows from A4.6.1.

A4.6.3. Definition. Let CX be an abelian category. We call the ’space’ X semilocal
if the equivalent conditions of A4.6.2 hold.
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